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Objective: Hypertrophy ligamentum flavum (LFH) is a common cause of lumbar spinal ste-
nosis, resulting in significant disability and morbidity. Although long noncoding RNAs (ln-
cRNAs) have been associated with various biological processes and disorders, their involve-
ment in LFH remains not fully understood.
Methods: Human ligamentum flavum samples were analyzed using lncRNA sequencing 
followed by validation through quantitative real-time polymerase chain reaction. To explore 
the potential biological functions of differentially expressed lncRNA-associated genes, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses 
were performed. We also studied the impact of lncRNA PARD3-AS1 on the progression of 
LFH in vitro.
Results: In the LFH tissues when compared to that in the nonhypertrophic ligamentum fla-
vum (LFN) tissues, a total of 1,091 lncRNAs exhibited differential expression, with 645 up-
regulated and 446 downregulated. Based on GO analysis, the differentially expressed tran-
scripts primarily participated in metabolic processes, organelles, nuclear lumen, cytoplasm, 
protein binding, nucleic acid binding, and transcription factor activity. Moreover, KEGG 
pathway analysis indicated that the differentially expressed lncRNAs were associated with 
the hippo signaling pathway, nucleotide excision repair, and nuclear factor-kappa B signal-
ing pathway. The expression of PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19 
was confirmed to be consistent with the sequencing analysis. Inhibition of PARD3-AS1 re-
sulted in the suppression of fibrosis in LFH cells, whereas the overexpression of PARD3-AS1 
promoted fibrosis in LFH cells in vitro.
Conclusion: This study identified distinct expression patterns of lncRNAs that are linked to 
LFH, providing insights into its underlying mechanisms and potential prognostic and ther-
apeutic interventions. Notably, PARD3-AS1 appears to play a significant role in the patho-
physiology of LFH.

Keywords: Hypertrophied ligamentum flavum, Long noncoding RNAs, Lumbar spinal ste-
nosis

INTRODUCTION

Lumbar spinal stenosis (LSS) is a prevalent condition, partic-
ularly among older adults, characterized by the constriction of 
the lumbar spinal canal. This constriction can lead to the com-
pression of the spinal cord and/or nerve roots, resulting in pain, 

sensory changes, and limited mobility.1 Hypertrophy ligamen-
tum flavum (LFH) plays an important role in the occurrence 
and development of LSS.2 LFH involves an increase in the 
thickness and stiffness of the LF, which is a yellow elastic con-
nective tissue located between adjacent laminae. LFH is charac-
terized by the loss of elastic fibers and the increase of collagen 

Neurospine
eISSN 2586-6591 pISSN 2586-6583 

This is an Open Access article distributed under 
the terms of the Creative Commons Attribution 
Non-Commercial License (https://creativecom-
mons.org/licenses/by-nc/4.0/) which permits 
unrestricted non-commercial use, distribution, 
and reproduction in any medium, provided the 
original work is properly cited.

Copyright © 2024 by the Korean Spinal 
Neurosurgery Society  

Neurospine 2024;21(1):330-341.
https://doi.org/10.14245/ns.2346994.497

https://orcid.org/0000-0002-7750-9759
http://crossmark.crossref.org/dialog/?doi=10.14245/ns.2346994.497&domain=pdf&date_stamp=2024-03-31


lncRNA Expression in Patients With Hypertrophied Ligamentum FlavumChen J, et al.

https://doi.org/10.14245/ns.2346994.497  www.e-neurospine.org  331

fibers, leading to ligamentum flavum (LF) fibrosis, spinal canal 
stenosis, and compression of neural elements.2-5 Actually, liga-
mentum flavum thickness is positively correlated with the de-
gree of fibrosis, which is the main cause of LFH.2,5-7 However, 
the exact mechanisms underlying LFH remain to be fully un-
derstood.

Long noncoding RNAs (lncRNAs) are noncoding RNA mol-
ecules longer than 200 nucleotides that influence gene expres-
sion at various levels, including transcription, post-transcrip-
tional regulation, and epigenetic modulation.8 The role of ln-
cRNAs has been identified in diverse biological processes, in-
cluding cell proliferation, apoptosis, and tumorigenesis.9,10 Ln-
cRNAs have also been associated with musculoskeletal diseases, 
such as osteoarthritis,11 intervertebral disc degeneration,12 and 
Ossification of the ligamentum flavum.13 lncRNAs are also in-
volved in the pathological process of fibrosis of the lung,14,15 liv-
er,16,17 kidney,18,19 and heart.20,21 Past studies in LFH have dem-
onstrated that lncRNAs are significantly associated with LF thick-
ness and fibrosis in LSS patients, such as lncXIST.22 However, 
the understanding of lncRNAs in the context of LFH is still 
limited. The study of differentially expressed lncrnas in LF of 
LSS patients can facilitate further elucidation of the pathogene-
sis of LFH at the epigenetic level, which may provide new clues 
for the treatment of LFH. This study aimed to investigate the 
differential expression of lncRNAs in LF tissues obtained from 
individuals with LSS when compared to LFN samples. We em-
ployed lncRNA sequencing analysis to identify the altered ln-
cRNAs and validated the findings using quantitative real-time 
polymerase chain reaction (qRT-PCR) in LF samples. Addi-
tionally, we conducted pathway analysis using Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
to determine the potential biological functions of the differen-
tially expressed lncRNAs. Furthermore, we examined the im-
pact of lncRNA PARD3-AS1 on the progression of LFH in vi-
tro. Our findings may offer new insights into the mechanisms 
underlying LFH development and contribute to the develop-
ment of novel diagnostic and therapeutic strategies for this dis-
order.

MATERIALS AND METHODS

1. Tissue Samples
We screened 30 patients with both LFH and lumbar disc her-

niation (LDH) from those with LSS symptoms. Clinical diag-
nosis indicates that both the affected areas of LFH and LDH in 
these patients require surgical treatment to remove LF. Informed 

consent was obtained from all patients. For the LFH samples, 
we determined the location of LFH disease through intraopera-
tive inspection and biopsy and removed them. For the LFN 
samples, we used LF samples from LDH-affected areas with no 
evidence of LSS based on preoperative magnetic resonance im-
aging. The tissues were immediately frozen in liquid nitrogen 
upon collection and stored at -80°C until further analysis.

The ethics committee of Renji Hospital approved this study, 
which is consistent with the guidelines of the Declaration of 
Helsinki. All patients provided their written informed consent 
prior to study participation.

2. Histological Analyses
The ligamentum flavum tissues were fixed overnight in 4% 

paraformaldehyde (Beyotime, Shanghai, China), followed by 
embedding in paraffin using standard procedures. Serial sec-
tions with a thickness of 4 μm were prepared for staining with 
hematoxylin and eosin (HE) and Masson trichrome.

3. RNA Extraction and Sequencing
As previously described, lncRNA sequencing was performed 

on 3 LFH and LFN samples using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA).23 The integrity of the RNA was assessed 
using NanoDrop ND-1000 (NanoDrop Thermo, Waltham, MA, 
USA). The Ribo-Zero ribosomal RNA removal kit (Illumina, 
San Diego, CA, USA) was used to remove ribosomal RNA, and 
strand-specific total RNA libraries were prepared using the TruSeq 
Stranded Total RNA Library Prep Kit (Illumina). Sequencing 
was performed by Cloud-Seq Biotech (Shanghai, China) on an 
Illumina HiSeq 2500 Sequencer (Illumina).

4. Bioinformatics Analysis
The high-quality reads were aligned to the human reference 

genome (UCSC hg19) using Hisat2 software (ver. 2.0.4). Frag-
ments per kilobase of transcript per million mapped reads 
(FPKM) values for lncRNAs were obtained using the cuffdiff 
software (part of cufflinks). Fold change and p-values were cal-
culated based on FPKM, and differentially expressed lncRNAs 
were identified using a volcano plot and fold-change filters. Hi-
erarchical clustering was performed using the differentially ex-
pressed lncRNA data. GO enrichment and KEGG pathway anal-
yses were conducted to explore the potential biological functions 
of the differentially expressed lncRNAs using GO and KOBAS 
software (the KEGG orthology-based annotation system).
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5. Isolation of Primary LF Cells
LF cells were isolated following a previously described meth-

od. The LFH and LFN tissues were minced into small pieces 
measuring approximately 0.5–1 mm3 and treated with 0.25% 
trypsin and 250 U/mL type I collagenase (Sigma-Aldrich, St. 
Louis, MO, USA) in T25 flasks. The resulting cells were cul-
tured in Dulbecco’s modified Eagle medium supplemented 
with 10% fetal bovine serum and 1% penicillin/streptomycin 
(Gibco, Waltham, MA, USA) at 37°C in a humidified incubator 
with 5% CO2 until they attained confluency. The culture media 
was replenished every 3 days, and trypsin was used for cell de-
tachment during passaging. LF cells obtained from the third 
passage were used for all experiments.

6. Plasmids and Transduction
To investigate the role of lncRNA PARD3-AS1 in LFH pro-

gression, in vitro experiments were conducted using human 
LFH cells obtained from the tissue samples. shRNAs targeting 
sequences shPARD3-AS1-1 (5́ -CCTAACTCGGTCCACGTTCC-3́), 
shPARD3-AS1-2 (5́-GTTCCCTAACTCGGTCCACG-3́), shPARD3- 
AS1-3 (5́ -CGTGGACCGAGTTAGGGAAC-3́ ), and PARD3-
AS1 overexpressing plasmid (ex-PARD3-AS1) were purchased 
from Vigenebio (Shandong, China). LFH cells were transfected 
with shRNA sequences/negative control or overexpressing plas-
mid/empty vector (mock) using Lipofectamine 2000 (Invitro-
gen) according to the manufacturer’s instructions. Transfection 
efficiency was assessed using qRT-PCR at 48-hour posttrans-
fection.

7.  Quantitative Reverse Transcription Polymerase Chain 
 Reaction
Total RNA was extracted from LF tissues or cells using TRIzol 

reagents (Invitrogen), followed by reverse transcription. qPCR 
was performed on the Applied Biosystems 7300 Fast Real-Time 
PCR system (Applied Biosystems, Waltham, MA, USA) using 
the SYBR Green qPCR master mix (Qiagen, Shanghai, China). 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was 
used as an endogenous control. RNA expression was evaluated 
by the 2−ΔΔCT method.24 Sequences of the primers used are listed 
in Table 1.

8. Western Blotting
Total cellular protein was extracted using the radioimmuno-

precipitation lysis buffer with protease inhibitors (Beyotime). 
Protein levels in each sample were quantified using a bicincho-
ninic acid assay kit (Beyotime). These proteins were separated 
by 10% sodium dodecyl sulfate-polyacrylamide gel electropho-
resis, and 40 μg of the proteins were subsequently transferred to 
polyvinylidene fluoride membranes.

The blots were blocked with 5% skim milk and incubated 
overnight at 4°C with primary antibodies. These antibodies 
(Abcam, Cambridge, UK) were prepared in 5% bovine serum 
albumin as follows: collagen I (1:1,500, ab279711); collagen III 
(1:1,500, ab6310); transforming growth factor (TGF)-β1 (1:1,500, 
ab215715), and GAPDH (1:5,000, ab8245).25-28

After incubation with suitable horseradish peroxidase-conju-
gated secondary antibodies for 1 hour, protein bands were visu-

Table 1. Primer sequences for quantitative real-time polymerase chain reaction analysis

Gene ID Gene short name Primer sequences Length (bp)

ENSG00000226752 PSMD5-AS1 F: 5´-GACCCAAGATGGACTGCCTGTA-3´ 157

R: 5´-TAACATCACACAGTATAGTGCAGCC-3´

ENSG00000257595 RP3-473L9.4 F: 5´-GGCTTTGCAGGGTACAGGCT-3´ 175

R: 5´-CAACAAATAACCTTCCCATCACC-3´

ENSG00000130600 H19 F: 5´-CTCAGGAATCGGCTCTGGAAG-3´   73

R: 5´-CCGATGGTGTCTTTGATGTTGG-3´

ENSG00000226386 PARD3-AS1 F: 5´-CAGCATAAGGAATCCTAACGCG-3´ 110

R: 5´-GTTCGGGCGTCTGCGTTAA-3´

ENSG00000271200 RP11-430G17.3 F: 5´-TGGGAAAAGTGGGCTGTGG-3´ 142

R: 5´-AATTTCCTTGATCTTGGGTCTCG-3´

ENSG00000267653 RP1-193H18.3 F: 5´-CCCATCTCAAGAACTACCCACG-3´ 184

R: 5´-TGTCGGAGAAGTCTGAGGGCA-3´

2597 GAPDH F: 5´-GGAAGCTTGTCATCAATGGAAATC-3´ 168

R: 5´-TGATGACCCTTTTGGCTCCC-3´
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alized using an enhanced chemiluminescence kit (Millipore, 
Darmstadt, Germany). Densitometric quantification was per-
formed using ImageJ (National Institutes of Health, Bethesda, 
MD, USA), with GAPDH serving as a normalization control.

9. Statistical Analysis
The study data were analyzed using GraphPad Prism v8 

(GraphPad Software, San Diego, CA, USA) and presented as 
the means± standard deviation of 3 independent experiments. 
Differences in the groups were analyzed by Student t-tests or 
1-way analysis of variance. A p-value of < 0.05 was considered 
statistically significant.

RESULTS

1.  Differential Expression of lncRNAs in LFH and LFN 
 Tissues
lncRNA expression patterns in patients with LFH were inves-

tigated by performing RNA sequencing (RNA-seq) on LFH tis-
sue samples (n = 3) and compared with those of control LFN 
samples (n= 3). The histological examination of patient-derived 
LF specimens stained with HE showed disrupted fiber organi-
zation in the LFH tissues (Fig. 1A). Furthermore, Masson tri-
chrome staining highlighted the increased abundance of colla-
gen fibers in these LFH tissues (Fig. 1B). The RNA-seq analysis 
revealed that 1,091 lncRNAs exhibited differential expression 
between LFH and LFN tissues, and 645 upregulated and 446 

Fig. 1. Differences in the lncRNA expression profiles between LFH and LFN tissues. (A) Illustrative images depicting the results 
of hematoxylin and eosin staining. (B) Exemplary images of the results of Masson’s trichrome staining. Scale bar = 100 µm or  
20 µm. (C) Volcano plot displaying the RNA-seq data. (D) Heat maps depictng the varying expressions of distinct long noncod-
ing RNAs in both LFN and LFH tissues. LFH, hypertrophy ligamentum flavum; LFN, nonhypertrophic ligamentum flavum.
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downregulated lncRNAs were observed in LFH tissues (Fig. 1C; 
Supplementary Data 1). The top 10 upregulated and downreg-
ulated lncRNAs on the basis of fold change values are displayed 
in a heat map (Fig. 1D) and summarized in Table 2.

2.  Functional Annotation of the Differentially Expressed 
 Lncrnas
GO enrichment and KEGG pathway analyses were performed 

to identify the potential biological functions of the differentially 
expressed lncRNAs. The top 10 most-enriched GO terms were 
associated with biological processes, cellular components, and 
molecular functions (Fig. 2) as follows: The differentially ex-
pressed transcripts were mainly involved in metabolic processes 
of the biological process domain (Fig. 2A and D); the organelles, 
nuclear lumen, and cytoplasm of the cellular component do-
main (Fig. 2B and E); and protein binding, nucleic acid bind-
ing, and transcription factor activity of the molecular function 
domain (Fig. 2C and F).

The top 10 and 5 enriched KEGG pathways of upregulated 
and downregulated circular RNAs (circRNAs), respectively 
(Fig. 3), include the hippo signaling pathway and nucleotide 

excision repair for upregulated circRNAs (Fig. 3A) and SNARE 
interactions in vesicular transport and the nuclear factor (NF)-
kappa B signaling pathway for downregulated circRNAs (Fig. 3B).

3. Validation of the Altered LncRNAs by qRT-PCR
To validate the differential expression of the altered lncRNAs 

identified by the sequencing analysis, we performed qRT-PCR 
on 30 paired tissue samples. The clinical and radiographic data 
are shown in Table 3. The upregulated and downregulated ln-
cRNAs were arranged according to the fold change from high 
to low. Three randomly selected upregulated and downregulat-
ed lncRNAs from among the top 10 lncRNAs were arranged, 
namely PARD3-AS1 (Fig. 4A), RP11-430G17.3 (Fig. 4B), RP1-
193H18.3 (Fig. 4C), PSMD5-AS1 (Fig. 4D), RP3-473L9.4 (Fig. 
4E), and H19 (Fig. 4F), for validation. The qRT-PCR results 
showed that the expression patterns of PARD3-AS1, RP11-
430G17.3, RP1-193H18.3, and H19 were consistent with the 
sequencing analysis results, which confirmed the differential 
expression of these lncRNAs. Among the 6 lncRNAs, PARD3-
AS1 displayed the largest significant difference.

Table 2. Differentially expressed long noncoding RNAs

Gene ID Gene short name Locus Fold change p-value Differentially 
expressed

XLOC_l2_006180 XLOC_l2_006180 chr17:67573391-67899141 10.71 0.00005 Up

ENSG00000231535 LINC00278 chrY:2870952-2970313 9.91 0.00005 Up

XLOC_010884 XLOC_010884 chr14:80931125-80938379 9.53 0.00005 Up

ENSG00000242086 LINC00969 chr3:195384932-195467994 9.38 0.00005 Up

ENSG00000226386 PARD3-AS1 chr10:35104694-35105314 9.37 0.00005 Up

ENSG00000271200 RP11-430G17.3 chr1:62207669-62208096 8.55 0.00005 Up

XLOC_l2_012844 XLOC_l2_012844 chr6:1458801-1555481 8.16 0.01285 Up

ENSG00000225746 AL132709.5 chr14:101403737-101426536 8.13 0.00005 Up

ENSG00000267653 RP1-193H18.3 chr17:67410838-67539472 7.96 0.00345 Up

ENSG00000241983 RN7SL566P chr19:39833035-39881835 7.93 0.03085 Up

ENSG00000272440 RP11-379F4.6 chr3:158413155-158413370 -32.28 0.00005 Down

ENSG00000235072 AC012074.2 chr2:25592041-25598714 -17.64 0.00005 Down

ENSG00000226752 PSMD5-AS1 chr9:123577773-123616651 -14.98 0.00185 Down

XLOC_l2_011530 XLOC_l2_011530 chr5:32925744-33298016 -14.10 0.01295 Down

ENSG00000273012 RP11-90B22.1 chr10:33630582-33630833 -13.55 0.00005 Down

ENSG00000270141 TERC chr3:169482307-169482848 -13.38 0.00955 Down

ENSG00000257595 RP3-473L9.4 chr12:111807085-111841114 -12.13 0.04970 Down

ENSG00000231486 AC096579.7 chr2:89109983-89165653 -12.03 0.00005 Down

ENSG00000130600 H19 chr11:2016405-2022700 -11.97 0.04085 Down

ENSG00000225285 RP4-758J18.10 chr1:1365918-1369953 -11.90 0.00005 Down
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4.  Effect of lncRNA PARD3-AS1 on LFH Progression In Vitro
To investigate the role of lncRNA PARD3-AS1 in LFH pro-

gression, we performed in vitro experiments using human LFH 
cells obtained from the tissue samples. First, we confirmed the 
transfection efficiency of the knockdown (Fig. 5A) and overex-
pression (Fig. 5B) of PARD3-AS1 by qRT-PCR. Among the 
tested shRNA constructs, shPARD3-AS1-3 produced the high-
est knockdown efficiency and was thus used in downstream 
experiments. The western blotting results showed that PARD3-
AS1 knockdown decreased collagen I, collagen III, and TGF-β1 
levels in the LFH cells compared with those in the control cells, 
while the levels were close to those in LFN cells. However, the 
PARD3-AS1 overexpression increased collagen I, collagen III, 
and TGF-β1 levels (Fig. 5C-F).

DISCUSSION

LFH is a major cause of LSS, leading to remarkable disability 
and morbidity.2 Growing evidence shows that noncoding RNAs, 
including lncRNAs, play a role in the development and pro-
gression of various disorders, including spinal diseases.9,29 Pre-
vious studies have investigated molecular mechanisms underly-
ing LFH; however, the role of lncRNAs in LFH progression is 

only partially understood.22,23,30,31 Here, we investigated the ex-
pression patterns of lncRNAs in LFH and LFN tissues by lncRNA 
sequencing. A total of 1,091 differentially expressed lncRNAs 
were identified in the LFH and LFN tissues, of which 645 were 
upregulated and 446 were downregulated.

The differentially expressed lncRNAs were analyzed for their 
biological functions by performing GO enrichment and KEGG 
pathway analyses. The GO analysis revealed that these lncRNAs 
were mainly associated with metabolic processes, organelles, 
nuclear lumen, cytoplasm, protein binding, nucleic acid bind-
ing, and transcription factor activity. These results are consis-
tent with those of previous studies that have implicated altera-
tions in cellular metabolism,32 organelle function,33 and tran-
scriptional regulation34,35 in LFH pathogenesis. Furthermore, 
the KEGG pathway analysis showed several signaling pathways 
that might be associated with the differentially expressed ln-
cRNAs, including the hippo signaling pathway, nucleotide exci-
sion repair, SNARE interactions in vesicular transport, and the 
NF-kappa B signaling pathway. The hippo signaling pathway 
plays a critical role in tissue growth and regeneration,36-38 where-
as nucleotide excision repair is involved in DNA damage re-
pair.39,40 SNARE interactions in vesicular transport are related 
to synaptic transmission and neurodegenerative diseases,41-43 

Fig. 3. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for differentially expressed long noncoding 
RNAs (lncRNAs). (A) The top 10 enrichment score values for the significantly enriched pathways in upregulated lncRNAs. (B) 
The top 10 enrichment score values for the significantly enriched pathways in downregulated lncRNAs.
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Table 3. Clinical and radiographic data

No. Age (yr) Sex Diagnosis
Level LF thickness (mm)

LFH LDH LFH LDH

1 71 Male LFH+LDH L4–5 L5–S1 6.13 2.05

2 78 Female LFH+LDH L5–S1 L4–5 5.75 1.96

3 68 Female LFH+LDH L4–5 L5–S1 5.52 1.92

4 56 Male LFH+LDH L4–5 L5–S1 5.26 1.75

5 80 Female LFH+LDH L5–S1 L4–5 6.74 2.36

6 69 Male LFH+LDH L5–S1 L4–5 6.33 2.34

7 76 Male LFH+LDH L5–S1 L4–5 7.18 2.43

8 70 Female LFH+LDH L4–5 L3–4 5.07 1.65

9 76 Female LFH+LDH L5–S1 L4–5 6.38 2.14

10 72 Female LFH+LDH L5–S1 L4–5 6.50 2.25

11 74 Female LFH+LDH L4–5 L5–S1 6.58 2.36

12 59 Male LFH+LDH L4–5 L3–4 5.88 2.03

13 74 Male LFH+LDH L5–S1 L4–5 4.78 1.58

14 73 Female LFH+LDH L4–5 L5–S1 7.05 2.43

15 76 Female LFH+LDH L5–S1 L4–5 5.25 1.73

16 65 Male LFH+LDH L4–5 L5–S1 5.08 1.70

17 63 Male LFH+LDH L4–5 L5–S1 5.54 1.89

18 75 Female LFH+LDH L5–S1 L4–5 5.65 1.86

19 70 Male LFH+LDH L4–5 L3–4 5.28 1.85

20 59 Female LFH+LDH L5–S1 L4–5 5.23 1.78

21 71 Male LFH+LDH L5–S1 L4–5 5.52 1.85

22 73 Female LFH+LDH L5–S1 L4–5 6.21 2.14

23 74 Male LFH+LDH L4–5 L5–S1 6.56 2.33

24 81 Female LFH+LDH L5–S1 L4–5 5.05 1.68

25 72 Female LFH+LDH L5–S1 L4–5 4.76 1.53

26 75 Male LFH+LDH L4–5 L5–S1 4.96 1.62

27 65 Female LFH+LDH L4–5 L5–S1 5.39 1.74

28 75 Male LFH+LDH L4–5 L5–S1 5.15 1.66

29 77 Female LFH+LDH L5–S1 L4–5 5.73 1.87

30 74 Female LFH+LDH L5–S1 L4–5 5.45 1.82

LFH, hypertrophy ligamentum flavum; LFN, nonhypertrophic ligamentum flavum.

whereas the NF-kappa B signaling pathway is associated with 
inflammation and immune responses.44,45 However, the specific 
roles of these pathways in LFH warrant further investigation.

The qRT-PCR results confirmed the expression patterns of 
PARD3-AS1, RP11-430G17.3, RP1-193H18.3, and H19, which 
were consistent with the sequencing analysis results. The inves-
tigation of the effect of lncRNA PARD3-AS1 knockdown/over-
expression on the progression of LFH in vitro showed that PARD3-
AS1 knockdown decreased the levels of fibrosis-related proteins 
(collagen I, collagen III, and TGF-β1) in the LFH cells, whereas 

PARD3-AS1 overexpression increased the levels these proteins. 
Past studies have demonstrated that collagen I and collagen III 
are representative fibrotic products.25 TGF-β promotes collagen 
production and induces fibrosis in LF cells.26-28 These results 
suggest that PARD3-AS1 may significantly affect the underly-
ing processes and pathophysiology of LFH.

Past data has demonstrated that PARD3-AS1 is highly upreg-
ulated in the blood vessels of patients with atherosclerotic plaque 
formation (APF).46 PARD3-AS1 is one of the unique genes as-
sociated with arterial spasm due to reduced blood flow.47 Past 
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Fig. 4. Six chosen long noncoding RNAs were verified through qRT-PCR. (A) PARD3-AS1. (B) RP11-430G17.3. (C) RP1-
193H18.3. (D) PSMD5-AS1. (E) RP3-473L9.4. (F) H19. LFH, hypertrophy ligamentum flavum; LFN, nonhypertrophic ligamen-
tum flavum. **p < 0.05, *p < 0.01 when compared to the LFN group. 
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studies have indicated that vascular disease is one of the con-
tributing factors to spinal degenerative diseases.48 Patients with 
LSS are often complicated by peripheral artery diseases (PADs) 
and aortic diseases based on atherosclerosis (AS).49 APF can re-
duce the blood supply to the lumbar spine and its surrounding 
structures, hinder the nutrition acquisition of the intervertebral 
disc, and induce disc degeneration and pain.50 It is thus specu-
lated that PARD3-AS1 may have a regulatory role between APF 
and LSS, and PARD3-AS1 is expected to provide a therapeutic 
target for spinal degenerative diseases induced by vascular dis-
eases. Exploring the mechanism of PARD3-AS1 involvement in 
LSS can facilitate the elucidation of the pathogenesis of angio-
matoid fibrous histiocytoma from the perspective of vascular 
diseases. The present findings suggest that PARD3-AS1 can 
promote the synthesis of fibrosis-related proteins in LF and 
thereby provide a therapeutic clue for LSS patients complicated 
with vascular diseases, such as APF and PAD. In the future, ex-
ploring the mechanism of PARD3-AS1 regulating LFH and its 
relationship with blood diseases can be used as a new research 
direction.

CONCLUSION

In this study, we identified specific lncRNA expression pat-
terns associated with enlarged LF in patients with LSS. The dif-
ferentially expressed lncRNAs might be associated with LFH 
development via diverse biological processes and pathways, of-
fering a basis for potential prognostic and treatment options for 
the patients. PARD3-AS1 might have a significant effect on the 
underlying processes and pathophysiology of LFH and needs 
further investigation. However, the present study has some lim-
itations, such as a small sample size and the lack of functional 
experiments in vivo. Thus, studies with larger sample sizes and 
animal models are warranted to verify our findings and explore 
the specific roles of altered lncRNAs and genes in LFH patho-
genesis.
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