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Osteoporotic vertebral fractures (OVFs) are a significant health concern linked to increased 
morbidity, mortality, and diminished quality of life. Traditional OVF risk assessment tools 
like bone mineral density (BMD) only capture a fraction of the risk profile. Artificial intelli-
gence, specifically computer vision, has revolutionized other fields of medicine through 
analysis of videos, histopathology slides and radiological scans. In this review, we provide 
an overview of computer vision algorithms and current computer vision models used in 
predicting OVF risk. We highlight the clinical applications, future directions and limita-
tions of computer vision in OVF risk prediction.
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INTRODUCTION

Osteoporosis is a pervasive condition marked by reduction in 
bone density and altered bone microarchitecture, rendering bones 
fragile and susceptible to fractures.1,2 These “fragility fractures,” 
can arise from minor trauma or even under physiologic stress 
including actions as benign as sneezing. As individuals age, the 
probability of incurring these fractures rises, predominantly af-
fecting the spine, hip, wrist, and humerus.3 Osteoporotic verte-
bral fractures (OVFs) stand out as the most prevalent among 
these, with approximately 1.5 million cases reported annually 
in the United States with an estimated economic cost of 13.8 
billion dollars.4,5 OVFs carry significant morbidity as they are 
associated with both acute and chronic back pain, height loss, 
kyphosis, diminished quality of life, and increased mortality.6 
Even after controlling for comorbidities, patients with OVFs ex-
perience an overall mortality rate almost twice that of matched 
controls.7 Furthermore, a history of spine fracture elevates the 
risk of another spine fracture by 5 times and doubles the risk of 
hip and other fractures.8-11 Despite the clear health implications, 
osteoporosis screening is still significantly underutilized.12

Dual energy x-ray absorptiometry (DXA) scans are widely 
recognized as the gold standard for assessing bone mineral den-
sity (BMD), serving as a crucial tool for determining an individ-
ual’s fracture risk.13 The World Health Organization defines os-
teoporosis as a BMD that falls 2.5 standard deviations below the 
peak density observed in healthy young adults.14 However, it has 
been shown that half of patients with fragility fractures do not 
have osteoporosis suggesting that BMD alone is insufficient.15-17 
As such, tools like the FRAX calculator have been introduced 
to provide a more comprehensive estimate of a person’s fracture 
risk by integrating BMD readings with a multitude of indepen-
dent clinical risk factors.18 These range from age, ethnicity, and 
body mass index (BMI) to elements such as history of prior frac-
tures, glucocorticoid use, and presence of other conditions such 
as rheumatoid arthritis.18 Though these methods are well-es-
tablished and validated, their utilization is limited. In fact, fewer 
than 23% of individuals receive the recommended DXA scan, 
making it challenging to pinpoint those at high risk and initiate 
timely interventions.19-24 Additionally, even among those who 
do undergo DXA scans, FRAX application is still sparse due to 
constraints such as limited time, physician awareness, and frag-
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mented medical records.19,20,23

In recent years, newer metrics of bone health and strength 
have emerged, including the trabecular bone score (TBS) and 
the bone strain index (BSI).25-28 While BMD provides a measure 
of bone strength, TBS offers insights into the bone’s microarchi-
tectural quality.25,26,29,30 A lower TBS suggests a deteriorated bone 
structure and can be used to independently predict fracture risk. 
26,29,30 Combining TBS with BMD paints a more comprehensive 
picture of fracture risk, and recent innovations have augmented 
the predictive power of the FRAX score through TBS.26,29-31 BSI 
is a relatively new metric that aims to predict femoral and spi-
nal fracture risk independent of both BMD and TBS.27,28 Through 
finite element analysis (FEA), BSI aims to quantify the strain 
that bones experience as different types of stress are induced, 
thereby shedding light on their robustness and susceptibility to 
fracture.27,28 Nevertheless, both BSI and TBS, which are derived 
from DXA images, are underutilized for reasons as discussed 
above. Furthermore, the specialized tools required to compute 
these indices often prevent wider adoption across institutions.

Alternative methods for assessing bone health, such as quan-
titative computed tomography (QCT), high resolution periph-
eral QCT (HR-pQCT), micromagnetic resonance imaging, and 
quantitative ultrasound have been proposed.32 However, the wide-
spread adoption of these modalities has been impeded by con-
cerns related to cost, radiation exposure, or ability to predict frac-
ture risks. Given these challenges, there is a need for the devel-
opment of more sophisticated and refined diagnostic approach-
es that can overcome these limitations.

Computer vision (CV), an offshoot of artificial intelligence, 
allows computers to interpret and make inferences from images 
and videos. More narrowly, a subset of CV known as radiomics 
is dedicated to the comprehensive, automated high-throughput 
extraction of quantitative medical image features. This extrac-
tion captures intricate disease characteristics, often elusive to 
the human eye, thereby enhancing diagnostic and predictive 
accuracy in clinical settings. Notably, CV and radiomics have 
made considerable inroads in other medical fields such as tu-
mor segmentation, seizure analysis, and etc.33 Therefore, in re-
cent years, CV has been increasingly used to predict vertebral 
fracture risk within the context of osteoporosis.

This review synthesizes the existing literature, offering a com-
prehensive overview of CV techniques and current CV models 
employed in predicting osteoporotic vertebral compression frac-
tures. Furthermore, it underscores their clinical applications, lim-
itations, and potential future trajectories.

METHODS

PubMed, Embase, and Web of Science were used as the pri-
mary databases for electronic article searching. The National 
Library of Medicine’s PICO (patient/population/problem, in-
tervention, comparison, and outcome) guideline was used to 
guide the literature search terms. The term “P (spine and com-
pression fracture) I (predictive model)” was used, with “C” and 
“O” being omitted as to maximize the capture of relevant pa-
pers. The MeSH (medical subject heading) terms used in the 
search included: spine, vertebral, fracture, compression, predic-
tive model, and prediction. The formal search consisted of the 
following structure: “(spine OR spinal cord OR vertebrae OR 
vertebral) AND (fracture OR compression fracture OR verte-
bral compression fracture OR VCF) AND (prediction model 
OR predictive model OR prediction).” This search yielded a to-
tal of 7,629 results which was then screened through an abstract 
review to yield a total of 37 papers which underwent a full-text 
review. The final papers were chosen based on the following in-
clusion criteria: (1) primary research studies that utilized CV 
for assessment of OVF risk and (2) studies written in English. 
Exclusion criteria included studies that utilized singular user-
constructed metrics (i.e., BMD, TBS, BSI, FRAX, and etc.) to 
predict OVF risk without an accompanying CV model and (2) 
papers that employed a cross-sectional design in which OVFs 
were predicted using scans that contained the fractured verte-
brae. There was a total of 6 papers that fit the inclusion and ex-
clusion criteria present in our search. Due to the heterogeneity 
in imaging modalities and algorithms used across the studies, a 
meta-analysis was not conducted (Fig. 1).

UNDERSTANDING COMPUTER VISION

Before exploring the clinical applications of CV for the pre-
diction of osteoporotic vertebral compression fractures, it is cru-
cial to understand the methodologies and metrics underpinning 
these studies. We discuss the overall workflow of a CV model 
(Section 3.1), and the different machine learning (ML) algo-
rithms used for classification (Section 3.2).

1. CV Workflow
A CV model begins with identifying a region of interest (ROI) 

within the larger image. This step can be done either manually 
or with the assistance of pretrained ML tools. This ROI is then 
used to extract a range of metrics that provide insights into its 
intrinsic qualities. Within the scope of radiomics, the metrics 
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extracted can be broadly categorized into 4 main types:
  Shape Features: These features convey information regarding 
the geometric shape and the size of the ROI without considering 
voxel intensity. Metrics include volume, surface area, and other 
shape-related descriptors.

First-Order Features: These features represent the distribution 
of individual voxel intensities without any emphasis on the re-
lationship between the voxels. Examples include mean, standard 
deviation, entropy, and others.

Texture Features: These features focus on patterns and voxel 
relationships, offering insights into the heterogeneity of the ROI. 
Such features can uncover subtle differences in tissue character-
istics and include metrics such as gray-level co-occurrence ma-
trices, gray-level run matrices, among others.

Higher-Order Features: Finally, higher-order features are de-
rived from transformed image spaces or by applying specific 
filters that can detect intricate patterns and relationships not read-
ily observable in the primary image. Examples include wavelet 
transform and the Laplacian of Gaussian.

Extracting these features is one of the hallmarks of CV. In con-
trast to traditional methods that rely on a limited set of manu-
ally defined metrics, CV allows for the extraction of a wide ar-
ray of features. This rich diversity in features allows for the de-

tection of nuanced interrelationships that are critical for imag-
ing tasks. In ML workflows involving CV, human intervention 
is still essential for selecting features considered most relevant. 
However, the scope of initial feature selection in these work-
flows is much broader compared to traditional methods. In con-
trast, deep learning represents a paradigm shift towards a fully 
data-driven methodology. It automatically computes its own 
features, which, although highly informative, are often complex 
and challenging for humans to interpret.

Once the features have been extracted from the data, they are 
then selected to make sure only the most informative ones are 
kept in the final model. Features that show significant variabili-
ty across patients and samples are typically deemed unreliable. 
Metrics such as the intraclass correlation coefficient aid in fil-
tering these out. Subsequently, techniques like least absolute 
shrinkage and selection operator (LASSO) and Boruta are em-
ployed to pinpoint the most predictive features for the target 
classification task. These curated features are then used in ML 
models to arrive at the final prediction.

2. Overview of Machine and Deep Learning Models
In the realm of machine/deep learning, models can be broad-

ly categorized into parametric and nonparametric based on their 
underlying assumptions and approaches. Parametric models 
make strong assumptions about the underlying distribution of 
the data. Examples include linear and logistic regression. On 
the other hand, nonparametric models do not make strong sta-
tistical assumptions about the underlying distribution. Exam-
ples include support vector machines (SVMs), decision trees, 
and deep learning algorithms. Nonparametric models can be 
more flexible and accurate for complex data distributions, but 
they often require more data, can be slower, and may risk over-
fitting if not handled properly.

1) Linear and multivariate regression
Linear and multivariate regression serve as foundational para-

metric algorithms in the realm of ML. Linear regression pre-
dicts the value of a dependent variable from a single indepen-
dent variable under the assumption of a direct linear relation-
ship. Multivariate regression extends this idea by predicting a 
dependent variable based on multiple independent variables, 
allowing it to model scenarios where multiple factors interplay 
to influence an outcome. In our review, we observed that 2 stud-
ies employed variations of regression analysis in their method-
ologies. Dieckmeyer et al.34 first utilized a deep learning algo-
rithm to segment vertebral bodies, which were then analyzed 

Fig. 1. PRISMA (preferred reporting items for systematic re-
views and meta-analyses) methods outline.
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with radiomics to extract features. These features were used as 
input variables in a logistic regression model for classification 
purposes. In a similar fashion, Wang et al.35 utilized radiomics 
for feature extraction; however, their approach differed in that 
they used these features as predictors in a layered multivariate 
regression model.

2) Support vector machines
SVMs are a widely used nonparametric model in the realm 

of ML. They are especially known for their performance in clas-
sification tasks. At its core, an SVM works by finding a hyper-
plane that best divides a dataset into classes. This hyperplane is 
determined in a way that maximizes the margin between the 
nearest data points (or support vectors) of the 2 classes, ensur-
ing optimal separation. In cases where data is not linearly sepa-
rable, SVMs employ a technique called the kernel trick to trans-
form the data into a higher-dimensional space which can be 
more easily separated. In our review, a study by Muehlematter 
et al.36 utilized an SVM for classification. In their methodology, 
they first applied radiomics to extract features from CT scans. 
These extracted features were then used as input variables to 
the SVM.

3) Decision trees and gradient boosted models
Decision trees are the foundation of tree-based ML algorithms. 

They operate by partitioning data at every node using a specific 
feature criterion. As data navigates through the tree, subsequent 
nodes refine this partitioning based on different features until a 

classification is reached. One of the inherent limitations of tree 
models is their difficulty in representing inter-feature relation-
ships. A gradient boosting model functions by sequentially build-
ing decision trees, where each subsequent tree aims to correct 
the errors of its predecessor. Our review included one paper 
that utilized a gradient boosted tree. Atkinson et al. employed 
radiomics for feature extraction, subsequently using these fea-
tures in a gradient boosted tree to carry out classification.37 Un-
like some other models, gradient boosted trees have the dual 
capability of performing both feature selection and classification, 
setting them apart in their methodology.

4) Convolutional neural networks
Convolutional neural networks (CNNs) is one of the most 

popular deep learning algorithms used for image processing. 
CNNs employ convolutional layers, where small, learnable fil-
ters slide over input data, extracting localized features. As these 
layers deepen, the network discerns more intricate patterns, tran-
sitioning from simple edges to complex structures like shapes 
or objects. In our paper, we reviewed 3 studies that implement-
ed 2-dimensional (2D)-CNNs in distinct ways within their frame-
work. Dieckmeyer et al.34 utilized a 2D-CNN to automatically 
segment vertebral bodies. Following this step, their approach 
diverged and instead utilized a combination of radiomics and a 
logistic regression to complete the analysis pipeline. In contrast, 
Kong et al.38 expanded the role of the CNN beyond segmenta-
tion. In their study, the 2D-CNN was utilized not only for ver-
tebral segmentation but also for the subsequent classification 

Fig. 2. Graphical depiction of a computer vision workflow. CNN, convolutional neural network. Segmentation is not necessary 
in an automated pipeline. Adapted from Dieckmeyer et al.47 and Ibrahim et al.48
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task. Finally, Nissinen et al.39 adopted a methodology similar to 
that of Kong et al.,38 utilizing a 2D-CNN for both feature extrac-
tion and classification tasks in their analysis of DXA scans. This 
approach highlights a more extensive application of 2D-CNNs 
(Fig. 2).

CLINICAL APPLICATIONS IN OVF RISK 
PREDICTION

1. Computed Tomography
Atkinson et al.37 was one of the first groups to utilize a CV-

based approach to assess the risk of OVFs. The study included 
2 distinct cohorts: those with distal forearm (DF) fractures which 
was comprised of 204 participants (99 cases and 105 controls) 
and those with vertebral fractures (VFs) which was comprised 
of 118 participants (40 cases and 78 controls). The researchers 
then extracted a myriad of radiomic features from various im-
aging modalities: 67 from HR-pQCT, 144 from Spiral QCT, and 
62 from DXA, summing up to 267 variables. Additionally, height, 
weight, BMI, and femoral neck areal BMD (FN aBMD) were 
included as features in all models. Subsequently, these models 
were trained to predict fracture status (case vs. control) either 
using individual sets of variables from HR-pQCT, Spiral QCT, 
and DXA or a combination of all. For comparison, a simple re-
gression model using only FN aBMD was established as a base-
line. When a gradient boosted model was trained on the DF 
cohort and tested on the VF cohort, the area under the curve-
receiver operating characteristic (AUC-ROC) values were 0.88, 
0.82, 0.94, and 0.95 using DXA, HR-pQCT, Spiral QCT, and all 
the variables combined respectively. On the same classification 
task, the baseline regression model using FN aBMD achieved 
an AUC-ROC of 0.69, demonstrating that incorporating radio
mic features enhances predictive accuracy beyond relying solely 
on FN aBMD. Furthermore, the model demonstrated robust 
performance when trained and tested across different fracture 
types indicating its capability to discern general fracture suscep-
tibility traits. Yet, a notable caveat of this study is its retrospec-
tive design. Given that the models were constructed using fea-
tures from post-fracture scans, there is a potential that the model 
recognized characteristics of a healed fracture, rather than ac-
curately forecasting future fracture risk.

While Atkinson et al.37 utilized a range of advanced imaging 
modalities to forecast OVF risk, which may not be readily ac-
cessible in many clinical settings, Muehlematter et al.36 utilized 
standard CT scans. Their study involved 2 approaches: first, a 
paired control study comparing vertebrae from 58 patients who 

developed OVFs (cases) against those from 58 matched con-
trols. Secondly, they conducted a within-subject analysis to pre-
dict the specific vertebrae at risk of fracture. Utilizing open-source 
tools, the team derived 305 texture analysis features of which 29 
were selected for inclusion in the final model. For benchmark-
ing, a regression model using the mean Hounsfield unit of the 
vertebrae was set as a reference. While this baseline model achi
eved an AUC-ROC of 0.83 in predicting whether a patient would 
have an OVF or not, all the ML alternatives performed better, 
with the SVM achieving the highest classification performance 
with an AUC-ROC of 0.97. In comparison, 2 expert radiolo-
gists achieved AUC-ROCs of 0.48 and 0.57 suggesting predic-
tions that were close to random chance. The second part of the 
study analyzed 2 consecutive CT scans of the 58 patients who 
developed an OVF. Intact vertebrae from the first scan were 
manually segmented and then categorized as either fractured 
or intact in the follow-up scan. In the context of this classifica-
tion task, the baseline regression model achieved an AUC-ROC 
of 0.52 compared to the leading ML model, SVM, with an 
AUC-ROC of 0.64. These results show that while combining 
texture analysis with ML on clinical CT scans can strongly pre-
dict overarching OVF risks, pinpointing specific vertebrae at 
imminent risk of fracture remains challenging.

Dieckmeyer et al.34 conducted a radiomic analysis of multi-
detector CT scans, focusing on the thoracolumbar spine of 32 
patients, evenly split between cases and controls. The L1 to L3 
vertebrae were automatically segmented through a deep learn-
ing algorithm from which 24 texture features, 2 FEA features, 
and volumetric BMD, were derived. These features were aver-
aged across vertebrae L1–3 before a ROC-AUC was calculated 
for each feature and used as inputs to a logistic regression mod-
el. Among them, the texture feature correlation (AUC-ROC of 
0.754) and volumetric BMD (AUC-ROC of 0.750) emerged as 
the strongest predictors of VFs; however, they only exhibited a 
moderate, statistically nonsignificant enhancement in predict-
ing vertebral fracture risk beyond just BMD. This suggests the 
potential superiority of vertebra-specific parameters in fracture 
risk assessment compared to radiomic parameters that are av-
eraged over all vertebrae of interest. A distinguishing feature of 
this study was its fully automated pipeline, streamlining the frac-
ture risk prediction process.

In a departure from prior cross-sectional studies, Wang et al.35 
conducted a longitudinal study to investigate the role of CT-based 
radiomics in forecasting OVF risk. Of the 7,906 patients who 
had CT scans between 2016 and 2019 without a prior OVF, 72 
developed OVFs by 2021. For comparison, 144 patients with-
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out OVFs were selected as controls. CT scans of the affected ver-
tebrae in the OVF group and the corresponding vertebrae in con-
trols were manually segmented and 1,316 features, comprised 
of first-order, texture-based and higher-order features, were ex-
tracted from each ROI. A LASSO model was used to identify 
the top 10 most predictive features of which 7 were selected in 
the final model. These features achieved AUC-ROCs ranging 
from 0.54 to 0.76. A Radscore was devised through a linear com-
bination of these selected features. Analysis of clinical factors 
through a Cox proportional-hazards model found that the ver-
tebral body’s CT value and the erector spinae muscle’s cross-sec-
tional area were independent predictors of OVF risk. Finally, a 
nomogram combining the 3 independent factors was tested achiev-
ing a C-index of 0.82.

2. X-Rays
In contrast to the CT-centric radiomic strategies previously 

discussed, Kong et al.38 turned to a deep learning paradigm to 
discern OVF risk from x-ray images. From a longitudinal cohort 
of 7,301 patients, a subset of 1,595 were selected. Of these, 1,416 
were designated for training, with a further 5:1 subdivision for 
cross-validation and the remaining formed the test group. Each 
participant’s data consisted of 2 x-rays: an initial one for train-
ing and a subsequent one to determine outcomes. Kong et al.’s 
computational strategy was 2-fold with both phases leveraging 
CNNs for data-driven insights: the first for keypoint detection 
and the second for survival analysis. Initially, a HRNet-W32 mod-
el, pretrained on ImageNet, was fine-tuned for center point de-
tection of the L1–5 vertebral bodies from which ROIs were ex-
tracted. For fracture risk prediction, 2 distinct models were de-
veloped: the Cox proportional hazard model, driven purely by 
clinical data, and a CNN-based DeepSurv model, which was 
trained using both clinical and x-ray data or just clinical infor-
mation alone. In the testing phase, DeepSurv, when trained with 
both images and clinical data, outperformed both FRAX and 
CoxPH in C-index measurements (DeepSurv’s 0.612 versus FR
AX’s 0.547 and CoxPH’s 0.594). Remarkably, even without clin-
ical data, DeepSurv’s achieved a higher C-index (0.614) than 
that of FRAX (0.547). This study demonstrated that using deep 
learning, particularly with x-rays, can surpass the predictive ca-
pabilities of FRAX in assessing vertebral fracture risks. Notably, 
the research emphasized the importance of a time-to-event anal-
ysis, marking a distinct shift from many previous deep learning 
studies that primarily focused on cross-sectional patient classi-
fications based on fracture incidences.

3. Dual Energy X-Ray Absorptiometry 
In recent years, the utility of DXA scans has grown with the 

emergence of innovative metrics like TBS and BSI that offer en-
hanced fracture risk prediction capabilities. Exploring this po-
tential, Nissinen et al.39 conducted a study to ascertain whether 
deep learning could further enhance fracture risk prediction by 
gleaning more insights from DXA scans. Drawing from the OST-
PRE dataset of 14,220 women, a subset of 2,949 was chosen for 
the analysis, among which 425 had encountered fragility frac-
tures following their DXA scan. To serve as a benchmark, logis-
tic regression models were developed using various predictors: 
BMD T scores from the lumbar spine and hip, TBS averages, and 
the patient’s age. The benchmark regression model achieved an 
AUC-ROC of 0.63 which compared to the CNN’s AUC-ROC 
of 0.63 indicates that the CNN was not able to do better than a 
simple regression. The limited efficacy of the CNN model might 
stem from challenges like insufficient training data and an im-
balanced dataset. Nonetheless, the CNN’s heatmap and gradi-
ent visualizations highlighted the vertebrae, indicating its ability 
to recognize genuine anatomical features (Tables 1, 2).

DICUSSION

OVFs are a significant health concern due to their association 
with increased morbidity, mortality, and diminished quality of 
life.7-9,11 Historically, the primary method for assessing OVF risk 
has been BMD.14,21 However, BMD measurements, while infor-
mative, capture only a fraction of the risk profile. They fail to 
account for other key determinants of bone strength, such as 
bone quality and architecture. In response to these limitations, 
newer metrics like TBS and BSI have been introduced that aim 
to provide a more comprehensive assessment of bone health along-
side tools like FRAX that integrate clinical information.23,25,27,29 
Yet, despite these advancements, a significant gap persists in the 
early identification and effective management of individuals at 
high risk for OVFs.

1. Accessibility
In recent years, CV has advanced the field of OVF prediction 

by allowing for more granular and thorough analysis of medical 
images. Unlike traditional approaches that analyze an image 
based on a few select values or broad trends, CV can utilize in-
formation from every pixel in the image to draw powerful and 
robust insights.

One of CV’s most promising aspects is its capability to pro-
cess and provide predictions using imaging techniques beyond 
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Table 1. Summary of studies included in the literature review

Study Mo-
dality

Meth-
od

No. of 
patients Inclusion/exclusion criteria AUC-

ROC
Level of OVF 

prediction
Atkinson  

et al.37 
(2012)

CT, 
DXA

GBM 244 Inclusion criteria:
   (1) �Post menopausal women ≥ 50 years with either a recent distal forearm  

fracture or moderate-to-severe vertebral fracture that was clinically  
diagnosed within the past 5 years

Exclusion criteria:
   (1) Controls with a history of osteoporotic fractures
   (2) Women with fractures due to severe trauma or specific pathological process
   (3) �Women who had undergone vertebroplasty or parathyroid hormone  

treatment

0.95 Thoracic and 
lumbar

Muehlemat-
ter et al.36 
(2018)

CT RF 58 Inclusion criteria: 
   (1) �Patients > 45 years that underwent a clinical CT scan that covered at least the 

thoracic and lumbar spine between 2006 and 2013
   (2) �Patients that received at least 2 CT scans with a year and a third scan at least 5 

months after the second scan
Exclusion criteria:
   (1) Patients with no spinal fracture detected
   (2) Traumatic fractures
   (3) Osseous metastasis of the spine

0.97 Thoracic and 
lumbar

Dieckmeyer  
et al.34 
(2021)

CT Logis-
tic Re-
gres-
sion

32 Inclusion criteria:
   (1) �Availability of a baseline and follow-up exam of the thorax and abdomen at 

the same MDCT scanner with a specific protocol
   (2) Follow-up of at least 6 months
   (3) Detection of at least one incident vertebral fracture in the follow-up exam
Exclusion criteria:
   (1) Treatment with osteoporotic drugs
   (2) �Osseous metastases as well as hematological or metabolic bone disease other 

than osteoporosis

0.754 Thoracic and 
lumbar

Nissinen  
et al.39 
(2021)

DXA CNN 2,949 Inclusion criteria:
   (1) �Patients from the OSTPRE dataset who had DXA scans at the OSTPRE  

15-year follow-up and OSTPRE-FPS measurements
Exclusion criteria:
   (1) Traumatic fractures
   (2) Lost or corrupted measurement data 

0.63 Lumbar

Kong et al.38 
(2022)

X-Ray CNN 1,595 Inclusion criteria:
   (1) �Patients > 50 years who had at least 2 spine radiographs in the AP and lateral 

positions from 2010 to 2015
Exclusion criteria:
   (1) History of fragility fractures at baseline
   (2) Only had one visit
   (3) No lateral x-rays in the neutral position
   (4) Follow-up period < 6 months
   (5) Treatment with osteoporotic drugs
   (6) Poor image quality 

0.614 
(C-in-
dex)

Lumbar

Wang et al.35 
(2023)

CT MVR 216 Inclusion criteria:
   (1) �Patients > 50 years that underwent a clinical CT scan for lung cancer screen-

ing covering at least the thoracic and lumbar spine between 2016 and 2019
Exclusion criteria:
   (1) Patients without 2 CT scans between July 2016 and January 2021
   (2) Poor image quality
   (3) Spine fracture prior to July 2016
   (4) Traumatic fractures
   (5) Metastatic bone disease   

0.82 
(C-in-
dex)

Thoracic and 
lumbar

CT, computed tomography; DXA, dual energy x-ray absorptiometry; GBM, gradient boosted machine; AUC-ROC, area under the curve-re-
ceiver operating characteristic; OVF, osteoporotic vertebral fracture; RF, random forest; MDCT, multidetector CT; CNN, convolutional neural 
network; AP, anteroposterior; MVR, multivariate regression.
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just DXA scans. A majority of current OVF risk assessment mea-
sures heavily depend on DXA scans, a concerning fact given that 
only roughly 23% of individuals receive the recommended DXA 
screenings.24 CV has demonstrated its potential by analyzing 
more commonly available scans, such as CTs and x-rays.34-38 Fur-
thermore, several studies highlighted in this review have not 
only used more commonly available scans but have leveraged 
opportunistic scans for fracture risk prediction, eliminating the 
need for specialized examinations or additional patient appoint-
ments.35,36,38 This approach not only promotes efficient utiliza-
tion of existing medical resources but is also cost-effective, min-
imizes redundant radiation exposure, and emphasizes patient 
safety and convenience.

However, a significant obstacle in the practical application of 
CV in clinical settings is the challenge of integrating these mod-
els into everyday practice. None of the models reviewed in our 
paper were incorporated into the electronic medical record 
(EMR) system, a step crucial for facilitating their adoption in 
clinical practice. Several hurdles complicate this integration in-
cluding the variability of EMR systems across different health-
care facilities, compliance with data privacy laws, and the need 
for substantial computational resources. With effective integra-
tion, CV has the potential to simplify clinical workflows by au-
tomating the generation of OVF risk scores from scans already 
in the database. Furthermore, by integrating CV models into 
the EMR system, these models can more easily be validated and 
refined as clinicians can provide feedback in a continuous man-
ner. The journey towards successful integration of CV models 
into EMR systems is complex and requires addressing various 
technical, regulatory, and practical challenges. However, the re-
sulting improvements in patient care and clinical efficiency make 
this endeavor a crucial and worthwhile pursuit for the future of 
healthcare.

2. Data Dependence
The integration of CV in predicting OVFs is indeed a prom-

ising stride forward, but its adoption is not without challenges. 
A prevalent concern is the reliance of many models on cross-
sectional and retrospective data.34,36,37,39 This reliance can affect 
a models’ reliability and external validity. To mitigate these is-
sues, it is vital to conduct prospective studies that validate the 
models on novel, unseen data. Moreover, the efficacy of CV al-
gorithms, particularly deep learning models, hinges on the qual-
ity and variety of the training data. Training on limited or ho-
mogenous datasets can lead to overfitting, where a model excels 
in handling known data but performs poorly on new data. This Ta
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challenge underscores the importance of robust validation tech-
niques like k-fold cross-validation and the use of holdout test 
datasets. All the studies reviewed in this paper utilized a hold-
out test dataset on which they tested the model’s performance. 
However, only 3 studies utilized a k-fold cross-validation strate-
gy.36,38,39

3. Model Interpretability
Model interpretability is a fundamental aspect in the adop-

tion and effective deployment of predictive tools, particularly in 
sensitive domains like healthcare. In simpler models, such as 
linear regression, the relationship between variables is straight-
forward; however, this clarity diminishes when we delve into 
the realm of large deep learning algorithms, which may have 
hundreds of thousands of parameters. In such complex models, 
tracing how input X influences the output becomes a challeng-
ing task. Even though deep learning algorithms like CNNs show 
the most promise, their lack of interpretability hinders their adop-
tion. A notable example includes “shortcut learning” in which a 
classifier uses irrelevant information (i.e., color of the sky) to 
correctly predict the task at hand (i.e., distinguishing between a 
cat or a dog). Such instances underscore the importance of un-
derstanding not just whether a model works, but how and why 
it works, to ensure its reliability and generalizability across di-
verse real-world scenarios.

Interpreting deep learning models in healthcare goes beyond 
understanding their mechanics; it also involves recognizing po-
tential biases ingrained in the training data. Medical datasets 
are inherently diverse, reflecting variations across ethnicity, age, 
sex, socioeconomic status, and other demographic factors. If a 
model is trained on data that overrepresents certain groups or 
underrepresents others, it may inadvertently learn and perpetu-
ate these biases, rather than accurately identifying susceptibility 
characteristics. Among the included studies, there were differ-
ences in sex and ethnicity across studies and often lack of diver-
sity within studies. For example, Nissinen et al.39 utilized the 
OSTPRE cohort which is comprised entirely of Finnish women. 
Meanwhile, Wang et al.35 and Dieckmeyer et al.34 do not explic-
itly state racial/ethinc demographics but given that both studies 
recruited patients from their own hospital, the demographics 
likely represent the local community which would be largely 
Asian and Caucasian respectively. Given the known differences 
in osteoporotic compression fractures across different races, 
there may be different radiographic features that are predictive 
in one racial cohort but not another.40 Additionally, included 
studies used training data from cohorts with varying sex splits: 

Nissinen et al.39 100% female, Wang et al.35 76% female, Dieck-
meyer et al.34 50% female, and Muehlematter et al.36 43% female. 
Although osteoporosis affects females more than males, preva-
lence of VFs may be similar across sex, so it is unclear how us-
ing a cohort that is majority female affects generalizability of 
radiographic features.41,42 In addition to identifying bias in the 
model via interpretability techniques, training models on large-
scale collaborative datasets that span multiple institutions and 
countries can also minimize the impact of bias. These datasets 
provide a rich and diverse range of demographics, patient his-
tories, and clinical scenarios, ensuring the model’s adaptability 
and accuracy across different populations and healthcare set-
tings. No included study had patients form multiple countries, 
and most did not describe specific racial breakdowns of the in-
cluded patient populations.

Efforts to enhance the interpretability of deep learning mod-
els have led to the development of several innovative techniques. 
Key among these are SHAP (SHapley Additive exPlanations), 
LIME (Local Interpretable Model-agnostic Explanations), and 
Grad-CAM (Gradient-weighted Class Activation Mapping). These 
methods are just a few from a broad array of approaches design
ed to understand the inner workings of what is often referred to 
as the “black box” of deep learning. By shedding light on the de-
cision-making processes of deep learning models, these tech-
niques mark an important step in making complex CV systems 
more understandable and transparent. However, despite these 
advancements, our review of current literature reveals that only 
a handful of studies have effectively employed well-defined in-
terpretability methods.38,39

Ultimately, clinical decision-making is a nuanced and multi-
faceted task. For ML and deep learning models to be effectively 
integrated into this domain, they must not only be accurate but 
also transparent and interpretable. A thorough understanding 
of deep learning models is essential for building trust and en-
suring their alignment with established clinical expertise and 
practices. Currently, these models are not at a stage where they 
can autonomously make clinical decisions. At present, their role 
is more supportive, enhancing physicians’ decision-making 
processes by offering additional insights and perspectives. The 
journey towards making these models mainstream in healthcare 
is ongoing, and addressing these challenges of trust, liability, and 
justice is a critical part of this journey.

In this study, we attempted to assess the quality and sources 
of bias in the included studies by using a modified minimum 
information about clinical artificial intelligence modeling check-
list (MI-CLAIM) as reported in Norgeot et al.43 and Smets et al.44 
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All studies did an adequate job of identifying the clinical prob-
lem, describing basic data collection, and data manipulation 
prior to development. Three of the included studies did not di-
rectly discuss model validation with internal or external valida-
tion, which may limit generalizability and reproducibility of re-
sults.34,35,38 Additionally, 3 studies did not clearly explain train or 
test parameters or in the case of Atkinson et al. they did not spec-
ify partitioning when the models were trained on VFs and then 
tested on the same set.34,35,37 Lack of transparency may artificial-
ly inflate results and reduce the model’s external validity. All stud-
ies identified model parameters and used appropriate statistical 
methods based on the model; however, in 2 studies which uti-
lized deep learning methods, there was limited sensitivity anal-
ysis done to determine salient primary or higher-order features 
that drove model performance.36,38 Finally, no study described 
access of code or data to reproduce results, providing a major 
hindrance to external validation and generalizability of all stud-
ies. These aspects of the studies must be addressed prior to wid-
er clinical use.

4. Future Directions
The future of CV in healthcare is set to undergo a significant 

transformation. Currently, ML models are preferred for their ef-
fectiveness with smaller datasets and superior interpretability. 
Yet, the potential of more powerful deep learning models (i.e., 
3D-CNNs, transformers, etc.) for improved accuracy is immense. 
These models have been proven to work significantly better in a 
variety of medical imaging contexts.45,46 However, their adoption 
is limited by high data demands. An essential move towards em-
ploying these advanced neural networks involves developing ex-
tensive, cross-institutional datasets. These datasets will mitigate 
training data biases and provide the extensive data necessary for 
these networks to learn effectively. This development will unlock 
the full potential of sophisticated neural network architectures, 
enhancing accuracy and reliability in CV applications for OVF 
prediction. Further, integrating these models into EMR systems, 
improving their interpretability, and continuously evaluating 
their long-term effectiveness are essential for incorporating them 
into standard clinical practice. This integration signifies a trans-
formative step in healthcare workflows, making advanced tools an 
integral part of medical care and heralding a new era where 
state-of-the-art technology and healthcare converge.

CONCLUSION

The use of CV for OVF prediction will provide an invaluable 

tool for both patients and physicians. The integration of CV and 
artificial intelligence into predictive models offers a transforma-
tive path to early detection and intervention. This comprehen-
sive review underscores the potential of these advanced com-
putational tools to harness the rich data embedded within medi-
cal images, extracting insights often beyond human perception. 
Such advancements not only optimize existing medical resourc-
es but also pave the way for greater patient safety, reduced costs, 
and enhanced convenience.
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