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Objective: Imaging parameters of Chiari malformation type I (CMI) development are not
well established. This study aimed to collect evidence of general or specific imaging mea-
surements in patients with CMI, analyze indicators that may assist in determining the se-
verity of CMI, and guide its diagnosis and treatment.

Methods: A comprehensive search was conducted across various databases including the
Cochrane Library, PubMed, MEDLINE, Scopus, and Embase, covering the period from
January 2002 to October 2023, following predefined inclusion criteria. Meta-analyses were
performed using RevMan (ver. 5.4). We performed a quantitative summary and systematic
analysis of the included studies. This study was registered in the PROSPERO (International
Prospective Register of Systematic Reviews) prior to initiation (CRD42023415454).

Results: Thirty-three studies met our inclusion criteria. The findings indicated that out of
the 14 parameters examined, 6 (clivus length, basal angle, Boogard’s angle, supraocciput
lengths, posterior cranial fossa [PCF] height, and volume) exhibited significant differences
between the CMI group and the control group. Furthermore, apart from certain anatomi-
cal parameters that hold prognostic value for CMI, functional parameters like tonsillar
movement, obex displacement, and cerebrospinal fluid dynamics serve as valuable indica-
tors for guiding the clinical management of the disease.

Conclusion: We collated and established a set of linear, angular, and area measurements
deemed essential for diagnosing CMI. However, more indicators can only be analyzed de-
scriptively for various reasons, particularly in prognostic prediction. We posit that the sys-
tematic assessment of patients’ PCF morphology, volume, and other parameters at a 3-di-
mensional level holds promising clinical application prospects.

Keywords: Chiari malformation, MRI-related parameters, Posterior cranial fossa, Meta-

Neurosurgery Society analysis, Systematic review
INTRODUCTION below the foramen magnum (FM).! Patients with CMI suffer
from various pain, sensory or motor deficits, and cognitive dys-
Chiari malformation type I (CMI) is a neuroanatomical ab-  function. The primary diagnostic tool for this disorder is mag-

normality, in which the cerebellar tonsils extend up to 5 mm  netic resonance imaging (MRI). With the development of med-

510 Wwww.e-neurospine.org


http://crossmark.crossref.org/dialog/?doi=10.14245/ns.2347150.575&domain=pdf&date_stamp=2024-06-30

Wang Z, et al.

MRI Parameters Related to CMI

ical imaging techniques, a wealth of anatomical data are avail-
able for diagnostic purposes. Many asymptomatic patients and
those who are symptomatic but have minimal tonsillar descent
have been identified with MRI.> With the development of re-
search, many MRI-related structural and functional parameters
have been identified; some of them have been proven to be rel-
evant to postoperative recovery, which can be used for the se-
lection of surgery. However, because of the structural complexi-
ty of the posterior cranial fossa (PCF) and occipital bone and
the different parameters chosen to be measured in each study,
there is a need for a systematic collation and analysis of these
parameters. Therefore, this study aimed to conduct a compre-
hensive literature review; collect evidence of general or specific
imaging measurements in patients with CMI, analyze indica-
tors that may assist in determining the severity of CMI and
guide its diagnosis and treatment, and identify gaps in previous
studies and priorities for future research.

MATERIALS AND METHODS

The meta-analysis and systematic review were registered on
the PROSPERO (International Prospective Register of System-
atic Reviews) with the registration number of CRD42023415454.

1. Data Sources and Search Strategy

We systematically searched published and unpublished litera-
ture between 2002 (January) and 2023 (October) from Cochrane
Library, PubMed, MEDLINE, Scopus, and Embase databases.
We concatenated terms and phrases using appropriate Boolean
operators. Retrieval included (“CM” OR “Chiari malformation”
OR “Arnold-Chiari Malformation”) and (“MRI” OR “Magnetic
Resonance Imaging” OR “Magnetic Resonance”). Language re-
strictions were not applied. We manually searched reference
lists of all articles and gray literature to identify potentially eligi-
ble studies.

2. Inclusion and Exclusion Criteria

Studies considered for meta-analysis and systematic evaluation
met the following inclusion criteria: (1) simple CMI without con-
genital craniocervical junction malformations; (2) studies that
examined children or adults who had a clinical diagnosis of CMI;
(3) complete data records through prospective or retrospective
studies; and (4) studies published in peer-reviewed journals. Adult
participants were those aged > 18 years. The exclusion criteria
were studies without effect sizes, unpublished duplicate publica-
tions and conference abstracts, and studies with incomplete data.

https://doi.org/10.14245/ns.2347150.575

3. Risk of Bias and Analysis Plan

Since most of the included studies were nonrandom compar-
ative studies, the risk of study bias was assessed using the New-
castle-Ottawa Scale,” and the preferred Cochrane tool for non-
randomized studies (Risk Of Bias In Non-randomized Studies -
of Interventions, ROBINS-I).* Each study was rated based on
the scores of the Newcastle-Ottawa Scale obtained. A maximum
score of 9 was set for 8 items. If a study scored > 6, it was con-
sidered to have a good quality. Using the ROBINS-I tool, a study’s
risk of bias is evaluated by considering confounding, partici-
pants’ selection, classification of interventions, deviations from
intended interventions, missing data, measurement of outcomes,
and selection of reported results. The risk assessment for each
bias category can be classified as low, moderate, serious, or crit-
ical. The overall bias risk of a study was determined by the high-
est risk identified within each category. Two reviewers separate-
ly evaluated study quality; any differences will be resolved by
discussion or consensus with the third reviewer.

4. Study Selection and Data Collection Process

All titles and abstracts identified from the search process were
independently assessed by 2 reviewers (ZW and SH). Instances
of disagreement were resolved by discussion between the 2 re-
viewers or by introduction of a third reviewer (ZL). All articles
were summarized in detail, and data from full-text articles that
met the study benchmarks were incorporated, including sub-
jects’ demographics and narrative summaries of outcomes and
methods. Summaries were performed using predesigned stan-
dardized tables. If there was a lack of relevant data in the in-
cluded studies, we request data by contacting the correspond-
ing author of the paper.

5. Quality Assessment

This study included reports with a control group or pre- and
postoperative comparisons; there were no systematic differenc-
es between the groups. All studies were approved by the ethics
committee and conducted with patients’ informed consent. Only
studies that met the quality criteria were included.

6. Quality of the Evidence

A modified Recommendations Assessment, Development,
and Evaluation grading (GRADE) method was used to catego-
rized the quality of evidence as high, moderate, low; or very low.
Because publication bias is difficult to assess in observational
studies,” only 4 factors were assessed in our meta-analysis: risk
of bias, inconsistency; indirectness, and imprecision. When there
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was a risk for a factor results, the quality of evidence for the re-
lated factor correspondingly decreased by 1 or 2 grades.® The
level of evidence and the strength of the recommendation were
determined through discussion by all members of the research

group.

7. Data Analysis and Systematic Review

Meta-analyses were performed using RevMan (ver. 5.4, Co-
chrane Collaboration, Oxford, UK) and IBM SPSS Statistics
ver. 19.0 (IBM Co., Armonk, NY, USA). The primary outcome
was the mean (M) and standard deviation of the objective as-
sessment measures for subjects. Meta-analyses of mean differ-
ences (MDs) were expressed as 95% confidence intervals (CIs).
The heterogeneity of results was estimated using I?, Z, and chi-
square tests (p <0.05). Risk of publication bias was assessed by
examining funnel plots for symmetry and summarization and
analyzing data that could not be combined. A leave-one-out
sensitivity analysis was used to test the robustness of the results.
Studies in which data could not be combined adopted a sys-

tematic narrative approach.

RESULTS

1. Search Results

The initial search identified 3,411 studies. A total of 1,832 stud-
ies remained after removing duplicate studies. After selecting
titles and abstracts and browsing the complete text, a total of

3,411 Records identified from Databases
1,114 PubMed/MEDLINE
803 Scopus
1,481 Embase
13 Cochrane Library

’ Identification ‘

|

1,832 Records screened

145 Reports sought for retrieval

Screening

145 Reports assessed for eligibility

17 Studies included in meta-analysis
16 Studies included in systematic review

| Included | |

33 studies which met the requirements and had complete data
were finally determined.”*® A total of 17 studies’* (2,097 pa-
tients with CMI and 1,055 controls) and 16 studies**** (in-
volving 1,270 patients with CMI) were included to evaluate the
role of imaging parameters in disease diagnosis and explore the
correlation between imaging parameters and postoperative prog-

13 were by the same au-

nosis, respectively. Two of these studies
thor. Therefore, in order to reduce the possibility of duplication
of data, only their most recent study® was included in the meta-
analysis to reduce bias. Among 1,055 individuals in the control
group, 377 were recruited healthy volunteers and 678 were pa-
tients with no obvious posterior fossa pathology or medical
problems; therefore, they were inferred to reflect PCF morphol-
ogy of the normal population. A flow chart of the search is

shown in Fig. 1.

2. Quality Assessment of the Studies

The authors used meta-analysis for the role of imaging pa-
rameters in diagnosing disease. According to the Newcastle-
Ottawa Scale, 7 studies scored 8 points, while 10 studies scored
7 points, indicating relatively high quality of each study. Table 1
showed the characteristics and quality scores of the included
meta-analysis studies. Supplementary Table 1 showed the risk
of bias assessments of the included studies using the ROBINS-I
tool. One study had a critical risk of bias due to missing data.
Seven studies scored moderately biased mainly due to bias in
confounding or measurement of outcomes. The quality of evi-

1,687 Records excluded based
on title and/or abstract

0 Reports not retrieved

Reports excluded with reasons
80 Study type
14 Uncontrolled trial
18 Systematic review

Fig. 1. Flow chart of study through different phases of the meta-analysis and systematic review.

512 www.e-neurospine.org

https://doi.org/10.14245/1ns.2347150.575



Wang Z, et al.

MRI Parameters Related to CMI

dence based on GRADE was downgraded to moderate (impre-
cision or inconsistency) or low (imprecision and inconsistency)
for these findings of the basal angle, Boogard’s angle, supraoc-
ciput lengths, PCF height, and PCF volume, respectively. The
detailed data for GRADE scales were presented in Table 2. In
contrast, discussing the correlation between imaging parame-
ters and postoperative prognosis used a systematic narrative
approach rather than meta-analysis. The reasons for the system-
atic narrative approach were (1) methodological differences be-

tween studies were too great to allow for straightforward com-
parisons, (2) inconsistencies in the data used to calculate effect
sizes, (3) inconsistencies in the data for potential confounders,
and (4) heterogeneity of the data used in previous studies, which
did not allow for the calculation of moderating effects.

3. Meta-Analysis Results of MRI-Related Parameters
in Patients With CMI

Numerous MRI-related parameters are used to assess pa-

Table 1. Key characteristics and quality scores of the included studies regarding the value of MRI-related parameters to diagnose

CMI
No. patients with  Mean age o Quality score
Study Country CMI/controls - Included quantitative parameters (NOS)
Karagoz et al.” 2002 Turkey 22/21 32.9+12.0 Basal angle, Boogard’s angle, tentorium angle, the slope of 7
the tentorium, PCF area
Milhorat et al.} 2010 USA 388/80 33.6+£10.1 Tentorium angle, clivus length, FMAP, PCFV and PCFBV 7
Alperin et al.’ 2014 USA 36/37 37.0+11.0  Clivus length, supraocciput lengths, PCFV 8
Aydin et al.'’ 2005 Turkey 60/30 35.1+12.7  Clivus length, supraocciput lengths, FMAP, AP diameter of 7
PCE, PCF height
Urbizu et al." 2014 Spain 100/50 455+12.2  Basal angle, Wackenheim angle, the slope of the tentorium, 7
clivus length, supraocciput lengths, FMAP, AP diameter
of PCE, PCF height, PCF area
Krishna et al.'> 2016 Canada 8/16 42.6+104  Tentorium angle, PCFV 7
Milhorat et al.* 2009  USA 280/75 33.7+10.4 Tentorium angle, clivus length, FMAP, PCFV, and PCFBV 8
Dufton et al."* 2011 Canada 81/107 42.6+13.0 Boogard’s angle, clivus length 7
Heiss et al.’” 2012 USA 48/18 36.8+11.2  Clivus length, supraocciput lengths 7
Houston etal.’*2018 ~ USA 162/140 38.3+10.0 Basal angle, Wackenheim angle, Boogard’s angle, odontoid 7
angle, clivus length, supraocciput lengths, AP diameter of
PCE, PCF height, PCF area
Nair and Rajshekhar””  India 27/10 <18 Boogard’s angle, tentorium angle, the slope of the tentorium, 7
2022 94/20 518 clivus length, supraocciput lengths, FMAP, AP diameter
of PCE PCF height
Nishikawa et al.'"® 2022 Japan 50/20 4-7 Clivus length, supraocciput lengths, PCFV, and PCFBV 8
65/24 8-117
70/23 12-15"
32/25 16-19°
230/58 20-497
Wang et al.”” 2014 China 52/17 37.0 (22-59)* Tentorium angle, clivus length 8
Yan et al.** 2016 China 67/40 15.3+3.9 Boogard’s angle, clivus length, supraocciput lengths, FMAP, 8
AP diameter of PCF
Yuksel et al.?! 2022 Turkey 70/69 38.5(17-70)* PCF area 8
Tubbs et al.2 2003 USA 100/50 9.0 (<18)  Odontoid angle 8
Besachio etal.” 2015  USA 55/125 34.0+£10.2  Wackenheim angle, odontoid angle 7

MRI, magnetic resonance imaging; CMI, Chiari malformation type I; NOS, Newcastle-Ottawa Scale; PCE, posterior cranial fossa; FMAP, an-
teroposterior diameter of the foramen magnum; PCFV, posterior cranial fossa volume; PCFBYV, posterior cranial fossa brain volume; AP, an-

teroposterior.
"Range. *Mean (range).

https://doi.org/10.14245/ns.2347150.575

www.e-neurospine.org 513



Wang Z, et al.

MRI Parameters Related to CMI

3]
2
m
g -
s
5 T =
O @ O
@ )
@ )
@ 5]
o]
8= = =
) < a
1) O
B 8 s 4
28 2 3
= = o
;
3
E | 2
B8 g " —
S = Q ~
Z 3
T . -
S = [ X
z O
g 2
k7 .2 .
s g 3
=) 2
£ > 3
= Z 197}
8 3 3
= .2 .2
T = —
|9}
o 3 &
3 ks 3
E zZ. Z
>
= 2 3 3
5] L =} o
gl B = s
g R ) Q
173 w w
Q = = -~
g2 S > >
B b= Z Z
>\ Ll
B
£ 3 2 2
< o
el ¢ ¢
0| O i 3 3
> 2 S 3
5 & z z
© 5 3
: T 3
3 5 i Z
(2] 172} — i
< <
= < g g
o N 2 2
g g g B
o 2 e e
w
g g g
S 8 B
()
o
o
=
=
g
»
w
(9]
172
w
(5
>~
= >
g ﬁ
g b —
) i A
) — ~
Q) — —
<= g < .
[ o = Y0
o
. 7 o o o0 o=
N Q —~ o 5w
v | %" |8 8 ®
= 2 E S § =
=} (o7 = N 8 o
—~ 7 O m

514 Www.e-neurospine.org

Boogard's angle

®EDO MODERATE

0.45-0.77

298

385

Serious’

Not serious  Not serious

Not serious

Observational studies

4 (ref. #7, 14, 16, 17)
Supraocciput lengths

@DD0O MODERATE

938 418 -0.45t0 -0.21

Not serious Not serious

Serious*

Not serious

Observational studies

6 (ref. #10, 11, 15-18)

Height of the posterior cranial fossa

3 (ref. #10, 11, 17)

®DDSO MODERATE

110 -1.49to -1.01

281

Not serious Serious’

Not serious

Not serious

Observational studies

Volume of the posterior cranial fossa

4 (ref. #8,9, 12, 18)

-21.99 to -18.88 ©DOO LOW

200

617

Not serious Serious®

Serious*

Not serious

Observational studies

GRADE, Grading of Recommendations, Assessment, Development, and Evaluations; CMI, Chiari malformation type I; CI, confidence interval.

"Limited sample size. ‘High inconsistency (I*>50%). *The data for the subgroup (child group) analysis came from the same study.

tients with CMI. After pooling, a total of 14 indicators were in-
cluded in the meta-analysis (Fig. 2, Supplementary Fig. 1).

Two studies'”"® grouped different age populations, and we in-
cluded each age group as a separate sample for analysis. One
study 18 classified CMI into 3 subtypes (type A, normal PCF
volume [PCFV] and occipital bone size; type B, normal PCFV
and small volume of the area surrounding the FM [VAFM] and
occipital bone size; and type C, small VAFM, PCFV, and occipi-
tal bone size). We combined these 3 datasets to exclude bias
caused by screening data from this study. The results showed
that 6 (clivus length, basal angle, Boogard’s angle, supraocciput
lengths, PCF height, and PCFV) of the 14 parameters were sig-
nificantly different in the CMI group compared with the con-
trol group.

1) Clivus length

A combined analysis of this parameter included data from 16
groups,*'+*2 1 543 patients with CMI and 699 controls, and
showed a significant difference in clivus length between the
groups (MD =-1.14; 95% CI, -1.51 to -0.77; 1?=92%; Z=5.97;
p<0.00001). Clivus lengths were smaller in patients with CMI
than in the controls. However, we found that the p-value after
the Q-test was too small. Sensitivity analyses and regression
studies on the results did not show significant bias factors. By
looking at the funnel plot, we found that 4 datasets®*>'** of the
included datasets were heavily biased. Exclusion of these 4 da-
tasets resulted in significantly lower heterogeneity (y*=20.21,
p=0.04; ’'=46%), thus suggesting them to be the primary
source of higher heterogeneity. After excluding these 4 datasets,
the results still showed a significant difference in the CMI
group compared with the control group (MD =-0.90; 95% ClI,
-1.02 to -0.78; Z=14.53; p< 0.00001) (Fig. 3A).

2) Basal angle

The basal angle (cranial base flexion angle) is the inclination
angle measured from the nasion, top of the dorsum sellae, and
the basal slopes of the occipital and sphenoid bones. The com-
bined analysis of this parameter included 3 studies”'"'s with
283 patients with CMI and 211 controls. The studies showed
that patients with CMI had a wider basal angle than controls
(MD=5.01; 95% CI, 3.81-6.21; heterogeneity: y*=2.00, p=0.37;
I*=0%; Z=8.15; p<0.00001) (Fig. 3B).

3) Boogard’s angle
Boogard’s angle is defined by the angle measured between
the top of the dorsum sellae, basion, and opisthion. The 5 data-
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Fig. 2. Photographs demonstrate the measurement techniques of magnetic resonance imaging-related parameters. 1, basal angle;
2, Wackenheim angle; 3, Boogard’s angle; 4, tentorium angle; 5, the slope of the tentorium; 6, odontoid angle; 7, clivus length; 8,
anteroposterior diameter of the foramen magnum; 9, supraocciput lengths; 10, anteroposterior diameter of posterior cranial fos-

sa; 11, height of posterior cranial fossa.

sets for this parameter were from 4 studies,”"*'*"” including 385

patients with CMI and 298 controls. One study" included data
of children and adults and did not produce significant bias in
the combined analysis. The results showed a greater Boogard’s
angle in patients with CMI than in the controls (MD=0.61;
95% CI, 0.45-0.77; heterogeneity: x> =7.43; p=0.11; I*=46%;
Z=7.42;p<0.00001) (Fig. 3C).

4) Supraocciput lengths
Supraocciput lengths were defined as the length of the occipi-
tal bone medial to the PCF in the midsagittal plane. Thirteen

11151820 ywere included in evaluation of

datasets from 8 studies
this parameter. Supraocciput lengths were shorter in patients
with CMI than in the controls. However, the heterogeneity was
slightly higher after the combined study ()’ =46.25, I=74%).
We analyzed the included datasets and found that 2 datasets*”
of them were derived from subgroup studies of patients with
CMLI. Exclusion of these 2 datasets resulted in significantly low-
er heterogeneity (y*=20.35, p=0.03, I*=51%), thus suggesting
them to be the primary source of higher heterogeneity. After
excluding these 2 groups, the results still showed a significant
difference between the 2 groups (MD =-0.33; 95% CI, -0.45 to
-0.21; Z=5.47; p<0.00001) (Fig. 3D).

5) Height of the PCF

The height of the PCF was measured with a line drawn from
the most anterior portion of the tentorium, perpendicular to
the McRae line. Five datasets from 4 studies'*'"'*"” were includ-

https://doi.org/10.14245/ns.2347150.575

ed in assessment of this parameter, and the results showed sig-
nificant heterogeneity (%*=23.82, p<0.0001, I*=83%). We per-
formed a sensitivity analysis using a leave-one-out method. The
analysis results (Supplementary Fig. 2) showed the source of
heterogeneity was the study of Houston et al.,'® which had only
female subjects; sex may have been a factor in determination
of the height of the PCE Because of a lack of studies on sexual
differences in the included literature, a subgroup analysis could
not be performed. After removing the data from this group,
the heterogeneity was significantly reduced (y’=4.24, p=0.24,
I’=29%). The height of the PCF was significantly reduced in
patients with CMI (n=281) compared with that in controls
(n=110) (MD=-1.25; 95% CI, -1.49 to -1.01; Z=10.17; p<
0.00001) (Fig. 3E).

6) Volume of the PCF

A total of 8 datasets (879 patients with CMI and 283 controls)
from 4 studies®*>'>'® were included in the analysis of PCFV. The
results showed a significant difference in PCFV between the
2 groups, but with high heterogeneity (y*=242.48, p<0.00001,
I’=97%). We analyzed the data across the groups and found
that age could be the reason for the high heterogeneity. We di-
vided the data into adult and child groups, while excluding the
study of Nishikawa et al.,'® which, unlike other studies, analyzed
16- to 19-year-olds as a subgroup. In most studies, 18 years of
age was the threshold to distinguish between adults and chil-
dren. When data from this age group were removed and tested
for subgroups, heterogeneity was significantly reduced (adults:
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(Continued)

Fig. 3. Comparison of magnetic resonance imaging-related parameters in patients with Chiari malformation type I (CMI) and
controls. Effect sizes are presented as mean difference with 95% confidence intervals (CIs). The heterogeneity of results was esti-
mated using I?, Z, and chi-square tests (p <0.05). Risk of publication bias was assessed by examining funnel plots for symmetry.
(A) The change in clivus length. (B) The change in basal angle. (C) The change in Boogard’s angle. (D) The change in supraoc-
ciput lengths. (E) The change in the height of posterior cranial fossa. (F) The change in the volume of posterior cranial fossa. SE,
standard error; SMD, standard mean difference; SD, standard deviation; df, degrees of freedom.

516 Www.e-neurospine.org

https://doi.org/10.14245/1ns.2347150.575



Wang Z, et al.

MRI Parameters Related to CMI

Mean Difference
IV, Fixed, 95% CI

Mean Difference
IV, Fixed, 95% CI

cMmi Control
Study or Subgrouy Mean  SD Total Mean SD Total Weight
16.1.1 Aduit
Alperin 2014 184 19 3/ 211 16 37 37%
Krishna 2016 1531 145 8 1678 175 16 1.4%
Milhorat 2010 1658 817 388 1901 7.84 80 67.0%
Subtotal (95% Cl) 432 133 721%
Heterogeneity: Chi*= 2.46, df= 2 (P = 0.29); F=19%
Test for overall effect: Z= 25.95 (P < 0.00001)
16.1.2 Child
Nishikawa 2022(12-15) 175.7 13.04 70 1858 9.54 23 9.9%
Nishikawa 2022(4-7) 165.11 13.88 50 178.2 9.48 20 75%
Nishikawa 2022(8-11) 17256 124 65 181.7 9.36 24 105%
Subtotal (95% Cl) 185 67 27.9%
Heterogeneity: Chi*=1.14, df=2 (P = 0.57); F=0%
Test for overall effect: Z=7.02 (P < 0.00001)
Total (95% CI) 617 200 100.0%

Heterogeneity: Chi*= 63.55, df=5 (P < 0.00001); F=92%
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Fig. 3. Comparison of magnetic resonance imaging-related parameters in patients with Chiari malformation type I (CMI) and
controls. Effect sizes are presented as mean difference with 95% confidence intervals (CIs). The heterogeneity of results was esti-
mated using I?, Z, and chi-square tests (p <0.05). Risk of publication bias was assessed by examining funnel plots for symmetry.
(A) The change in clivus length. (B) The change in basal angle. (C) The change in Boogard’s angle. (D) The change in supraoc-
ciput lengths. (E) The change in the height of posterior cranial fossa. (F) The change in the volume of posterior cranial fossa. SE,
standard error; SMD, standard mean difference; SD, standard deviation; df, degrees of freedom. (Continued)

=246, p=0.29, I'= 19%; children: 37 = 1.14, p=0.57, 2= 0%).
PCFV was significantly reduced in patients with CMI compared
with controls, in both adults (MD =-24.25; 95% CI, -26.09 to
-22.42; 7Z=25.95; p<0.00001) and children (MD =-10.55; 95%
CI, -13.49 to -7.60; Z=7.02; p < 0.00001) (Fig. 3F).

4. MRI-Related Parameters in Predicting Prognosis of

Patients With CMI

MRI-related anatomical parameters such as McRae line, pB-
C2 line, clivoaxial angle, FM-C2 cistern, condylar-C2 sagittal
vertical alignment may be associated with the prognosis of CMI.
The introduction of functional parameters, such as tonsillar
movement, obex displacement, and cerebrospinal fluid dynam-
ics provide adequate guidance for clinical management of the
disease. Table 3 summarizes the main characteristics and out-
comes of the collected studies conducted on MRI-related imag-
ing parameters for prediction of prognosis in patients with CMI
(Supplementary Fig. 1).

DISCUSSION

This study showed that patients with CMI had significant
changes in clivus and supraoccipital length and PCFV compared
with controls, except for tonsillar herniation. For postoperative
predictors of CMI, traditional anatomical parameters are not
satisfactory predictors, whereas cerebrospinal fluid dynamics
and tonsillar motion parameters may be more convincing.

https://doi.org/10.14245/ns.2347150.575

1. The Value of MRI-Related Parameters in the Diagnosis
of CMI
1) Measurement and assessment of PCF structures

Some studies'"'®"” did not reveal a difference in the antero-
posterior (AP) diameter of the PCF compared with normal con-
trols with CMI, whereas others have found AP diameters of the
PCF in patients with CMI to be shorter.'”” Herein, the AP di-
ameter of the PCF in patients with CMI was not significantly
different from that of the controls. In contrast, the height of the
PCF showed some differences. The study of Houston et al.'
had only female subjects; application of the meta-analysis to
evaluate the change in PCF height in patients with CMI showed
significant heterogeneity. However, the other PCF parameters
in that study did not show substantial heterogeneity when sub-
jected to the meta-analysis, suggesting that the variation in PCF
height may be related to sex. The reduction in PCF height may
account for the smaller PCF in women. However, very few stud-
ies have focused on the effect of sex differences on the structure
of the PCF to allow further analysis.

Some studies have concluded that patients with symptomatic
CMI have a normal PCF area,>>* whereas other studies re-
vealed that patients with CMI have a smaller PCF area.""***! We
found no significant difference in the PCF area and a high de-
gree of heterogeneity between the data of patients with CMI
compared with that of the controls. This can be attributed to
variation in the measurement method and selection range.
However, the measurement of area, which is usually manually
delineated, is highly biased.

Volumetric measurements give a more realistic picture of the
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size of the PCF than linear and area measurements. We showed
a significant difference in PCFV between patients with CMI
and normal subjects, thus confirming that a smaller PCF is a
characteristic feature of patients with CML It is also clear from
the subgroup analysis that PCFV is associated with demograph-
ic characteristics. Age, race, sex, and body mass index have sta-
tistically significant effects on intracranial measurements and
must be considered.” Herein, age was found to be a significant
factor affecting PCFV. Subgroup analysis showed that grouping
by age significantly reduced statistical heterogeneity and dem-
onstrated that adult and pediatric patients with CMI had a sub-
stantially smaller PCFV than the corresponding control group.
The PCFV is significantly smaller or the PCF is underdeveloped
in patients with CML**>* which may be the leading cause of
the caudal downward protrusion of the normally developing
hindbrain." One study has explored the extent of the associa-
tion between linear and volumetric measures. In addition to
occipital bone length being mildly correlated with PCF and
fourth ventricle volume in the CMI cohort, the other expected
linear measures were not correlated in each cohort.’ These find-
ings suggest that linear measures only complement volumetric
measures.

Despite the potential diagnostic and prognostic value of PCF
morphology, volumetric assessment of PCF size is not com-
monly used in clinical practice. It is very time-consuming to
manually outline the PCF size on multiple images. In contrast,
manual measurement of the length of different markers of the
PCF is more time efficient and more commonly used as an al-
ternative measurement of PCFV. With the development of
3-dimensional (3D) imaging technology and artificial intelli-
gence, the results of the 3D evaluation are likely to be more ac-
curate and representative, which is a good direction for future
research.

2) Measurement and assessment of clivus lengths and associated

angles

We found a significant difference in clivus length between
patients with CMI and controls. Although heterogeneity of the
data included in the meta-analysis was high, the overall effect
showed that the clivus was shorter in patients with CMI. We
also found that patients with CMI exhibit a wider basal angle
and Boogard’s angle than those without. In the author’s opin-
ion, angle combined with clivus length is strong evidence for
diagnosing CMI, and separate indices often do not provide a
comprehensive characterization.

520 Wwww.e-neurospine.org

3) Measurement and evaluation of the occipital structure

Shorter occipital bone length®"'>'%** and wider tentorium
angulation>"”" are typical features of CMIL. This study used a
meta-analysis to reveal that the patients with CMI and controls
showed significant differences between occipital bone length
measurements; however, it did not show significant differences
in either the tentorium angle or slope of the tentorium. Shorter
occipital bone significantly affects the overall layout of the PCE
There is an abnormality in the length of the occipital bone in
patients with adult Chiari malformation due to hypoplasia of
the occipital body originating from the paraxial mesoderm.

Further analysis showed that the brain tissue volume in the
PCF did not differ in patients with CMI compared to controls.*'®
This allows for overcrowding of the PCF in patients with CMI,
which affects the flow of cerebrospinal fluid and alters the form
of cerebrospinal fluid flow in the posterior part of the PCE. As
symptoms worsen, they will eventually affect the neural struc-
tures of the PCE We believe that the rear aspect of the PCF is a
better indicator of the degree of crowding than the structures
on the anterior part of the PCE. Shorter occipital bone length
makes the PCF morphology shallower and more likely to cause
crowding of the PCF structures. Changes in tentorium angle
are strong evidence to explain the narrowing of the PCF but
may not be a characteristic change in CMI. To compensate for
the small PCE, the cerebellar tentorium shifts upwards, result-
ing in an abnormal tentorium angle, which may be an altera-
tion secondary to CML** In the future, exploring the correla-
tion between changes in tentorium angle and CMI symptoms
may be done, using the angle change as an adjunct to CMI
staging rather than a basis for diagnosis. Considering the PCF
to be a container, shorter clivus and occipital lengths make the
area of the mouth of the container much larger than the area of
the bottom. The area of PCF in the midsagittal plane showed
no difference, but the height had decreased. If the PCF of an
ordinary person is like a bowl, then the PCF of a patient with
CMI is more like a plate. Thus, it is important to measure the
shape, volume, and other parameters of PCF in patients with
CMI at the 3D level.

Many studies have been conducted on measuring FM in pa-
tients with CMI; however, the conclusions differ. We found no
significant difference in the diameter of the FM in the midsag-
ittal plane between patients with CMI and controls. We specu-
late one of the 2 possibilities: firstly, because of the small sample
size of the study, the measurement of the FM area was not per-
fect; secondly, there may have been a lack of relationship be-
tween the FM and tonsillar herniation and obstruction of cere-
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brospinal fluid flow. One study found that cerebrospinal fluid
reflux at FM may not be due to bone structure.”

2. Value of MRI-Related Parameters in Predicting Prognosis
of Patients With CMI
1) Anatomical structure parameters

The degree of cerebellar tonsillar ectopia is the basis of CMI
diagnosis; however, is not a prognostic factor.**** An earlier
study collected the following data from pediatric patients with
CMI (with or without improvement): age at presentation, dura-
tion, type, morphological measurements of the cranial and FM,
and presence of syringomyelia and found that these variables
were not associated with outcomes at short-term postoperative
follow-up.® CMI is associated with smaller PCFV,** which is
also an effective parameter for diagnosis. However, a study based
on characteristic PCF parameters found that morphometric
measurements of the PCF did not predict the response to pos-
terior fossa decompression in patients with CML> This study
encompassed 13 linear, 8 angular, and 4 area parameters associ-
ated with PCF features and 4 ratios associated with these linear
and area parameters to assess.

McRae line value and symptom severity can be used as pre-
dictors of surgical intervention decisions.”* Authors of this study
also developed a CHIASURG scale including depth of tonsillar
herniation, Chamberlain line, and McRae line to predict surgi-
cal interventions in patients with CML* The scale can effec-
tively and reliably predict the risk of surgical intervention.

The pB-C2 line is drawn perpendicular to the line from the
C-2 body and the basion at the posterior extent of the odontoid
process. The results of a large retrospective study showed better
outcomes after posterior fossa decompression with duraplasty
treatment in patients with grade I pB-C2 lines (pB-C2 line
>3 mm) with increased ventral canal obstruction than those
with grade 0 pB-C2 lines (pB-C2 line <3 mm).”* A pB-C2 line
of >9 mm may indicate brainstem compression and is an indi-
cation for anterior decompression surgery.”® Another study
found that the clivoaxial angle increased significantly only in
the postoperative improvement group by analyzing clivoaxial
angle, pB-C2 line, atlantodental interval, basion-dens interval,
basion-axial interval, and canal diameter at the level of C1.”
Additionally, other studies suggested that traditional anatomi-

cal parameters do not predict prognosis,**

which may be re-
lated to the age and sex of the patients involved in these studies.

The preoperative volume of the FM-C2 cistern is a prevalent
indicator. It is a novel cerebrospinal fluid space of the upper

cervical canal extending from the FM to the inferior cortex of
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the C2 body. In younger patients with CMI, the preoperative
volume of the FM-C2 cistern is an indicator that may play a
good role in predicting postoperative outcomes.” The condy-
lar-C2 sagittal vertical alignment provides a more accurate de-
scription of the anatomical loading relationship between the at-
lantooccipital joint and the cervical segment of the upper spine.
A single-center study found that children with CMI had a
higher condylar-C2 sagittal vertical alignment than controls.”
A multicenter cohort study further validated the predictive val-
ue of condylar-C2 sagittal vertical alignment with a sensitivity
of 100%, specificity of 86%, and misclassification rate of 12.6%
in identifying high-risk patients.”" A value of condylar-C2 sagit-
tal vertical alignment >5 mm was a major predictor of the re-
quirement of occipitocervical fusion or ventral brainstem de-
compression surgery in patients with CML***' The obex caudal
displacement and shorter distances of the M-line-fourth ven-
tricle vertex were associated with good Chicago Chiari Outcome
Scale scores, suggesting that patients with higher hindbrain pa-
thology responded better to surgery.”

Although these studies have yielded optimistic results, fur-
ther research is needed to demonstrate the predictive value of
these indicators.

2) Cerebrospinal fluid dynamic parameters

Qualitative analysis of phase contrast-MRI can provide addi-
tional information to help clinicians decide whether to oper-
ate.****>! The results of Fan et al.” revealed that the subarach-
noid manipulation procedure was more feasible for CMI pa-
tients with type III cerebrospinal fluid kinetic abnormalities (ce-
rebrospinal fluid flow blockage found in the posterior fossa of
the cerebellum and tonsil, the IV ventricle and the central aq-
ueduct, and the ventral space between the clivus and the brain-
stem). However, the subdural decompression procedure was
more suitable for patients with CMI with type I cerebrospinal
fluid kinetic abnormalities (cerebrospinal fluid flow blockage
found in the posterior fossa space behind the cerebellum and
tonsils).”® Moreover, preoperative normal hindbrain cerebrospi-
nal fluid flow is an independent risk factor for intervention fail-
ure after decompression of patients with CMI.** In other words,
abnormal cerebrospinal fluid flow in the hindbrain region pre-
operatively may predict a better surgical outcome. One study
found that combined ventral and dorsal cerebrospinal fluid flow
analysis of the hindbrain could better predict patient response
to PCF decompression.” Aqueductal stroke volume was crucial
for determining the need of surgical treatment.” An aqueductal
stroke volume of <12 L is an essential factor for considering
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surgical intervention. Conservative treatment is indicated for
adult patients with CMI who are symptomatic and have an aq-
ueductal stroke volume > 15 pL. This study also noted that
clinical improvement was positively correlated with an increase

in aqueductal stroke volume after treatment.

3) Tonsillar motion

Slight movement of the mesencephalon and brainstem that
occurs with the arterial pulsations in the cardiac cycle due to
the descending tonsils is a nonnegligible factor in causing ab-
normal cerebrospinal fluid flow as well as altered neuromotor
function. The tonsillar motion was positively correlated with
the exacerbation of clinical symptoms in patients with CML*
Tonsillar motion is associated with reduced cerebrospinal fluid
flow that manifests as aggravated clinical symptoms.* Similar
results were obtained in another study, which compared mor-
phological and physiological parameters in patients with CMI
with excellent and poor prognosis after decompression surgery
and found that maximal spinal cord displacement during the
cardiac cycle was a better predictor of prognosis than morpho-
logical indicators.”® One study even found normalization of the
cerebellar tonsils and brainstem in patients, 6 months after cra-
niocervical decompression by follow-up observation. Thus, the
authors inferred that CMI is not a congenital disorder but an
acquired malformation caused by cerebellar tonsillar pulsation
embedded into the greater occipital foramen."

3. Limitations

There were some limitations to this study. Primarily, we col-
lected and established some MRI-related morphological and
functional parameters in patients with CMI, and obtained some
good results. However, most of these parameters are based on
traditional measurement methods and are too affected by hu-
man factors. Second, most studies did not clearly differentiate
between symptomatic and asymptomatic CMI subjects, there-
fore, imaging-based features specific to the onset and nononset
of symptoms are not available. Third, there is very little data in
the literature on female subjects. Due to the lack of studies on
gender differences, subgroup analysis was not possible. Finally,
due to the lack of studies on the prognostic value of MRI-relat-
ed parameters in patients with conservative follow-up, this as-

pect has not been evaluated.

CONCLUSION

With the development of MRI technology, diagnosing CMI

522 Www.e-neurospine.org

should become more accurate and comprehensive. The tradi-
tional measurement method is affected by human factors and
has too many parameters. The complexity of the cranial struc-
ture also makes it more challenging to select valid parameters.
We collated and established a set of linear, angular, and area
measurements deemed essential for diagnosing CMI. However,
more indicators can only be analyzed descriptively for various
reasons, particularly in prognostic prediction. It has become a
major clinical challenge to determine and manage the disease
faster and more accurately through multi-dimensional analysis.
We posit that the systematic assessment of patients’ PCF mor-
phology, volume, and other parameters at a 3D level holds prom-
ising clinical application prospects. Alternatively, additional cri-
teria could be introduced to evaluate the occipital bone, slope,
and basal angle as references for confirming the disease diag-
nosis. Multimodal MRI can be used for determination of dis-
ease and prediction of prognosis by introducing parameters to
provide adequate guidance for clinical management.

NOTES

Supplementary Material: Supplementary Table 1 and Figs.
1-2 can be found via https://doi.org/ns.2347150.575.
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Supplementary Fig. 1. MRI-related anatomic and functional parameters for evaluating the diagnosis and prognosis of Chiari
malformation type I. MRI, magnetic resonance imaging; PCE, posterior cranial fossa; CSE cerebrospinal fluid; FM, foramen
magnum; C-C2SVA, condylar-C2 sagittal vertical alignment; pB-C2, perpendicular to the basion to C2 line; FM-C2, foramen

magnum-C2; FVV, fourth ventricle vertex.
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Meta-analysis estimates, given named study is omitted
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Sensitivity analysis of heterogeneity about the result of posterior cranial fossa height. CI, confidence in-
terval.
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