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Objective: Computed tomography (CT) imaging is a cornerstone in the assessment of pa-
tients with spinal trauma and in the planning of spinal interventions. However, CT studies 
are associated with logistical problems, acquisition costs, and radiation exposure. In this 
proof-of-concept study, the feasibility of generating synthetic spinal CT images using bipla-
nar radiographs was explored. This could expand the potential applications of x-ray machines 
pre-, post-, and even intraoperatively.
Methods: A cohort of 209 patients who underwent spinal CT imaging from the VerSe2020 
dataset was used to train the algorithm. The model was subsequently evaluated using an in-
ternal and external validation set containing 55 from the VerSe2020 dataset and a subset of 
56 images from the CTSpine1K dataset, respectively. Digitally reconstructed radiographs 
served as input for training and evaluation of the 2-dimensional (2D)-to-3-dimentional (3D) 
generative adversarial model. Model performance was assessed using peak signal to noise 
ratio (PSNR), structural similarity index (SSIM), and cosine similarity (CS).
Results: At external validation, the developed model achieved a PSNR of 21.139 ± 1.018 dB 
(mean ± standard deviation). The SSIM and CS amounted to 0.947 ± 0.010 and 0.671 ±  
0.691, respectively.
Conclusion: Generating an artificial 3D output from 2D imaging is challenging, especially 
for spinal imaging, where x-rays are known to deliver insufficient information frequently. 
Although the synthetic CT scans derived from our model do not perfectly match their ground 
truth CT, our proof-of-concept study warrants further exploration of the potential of this 
technology.

Keywords: Artificial intelligence, Deep learning, Image conversion, Synthetic computed 
tomography, Spine, Machine learning

INTRODUCTION

Computed tomography (CT) imaging is an essential modali-
ty in the diagnosis of neurosurgical disease.1-3 In spine surgery, 
is routinely employed to assess the extent of injury or signs of 
degeneration.1,4 Furthermore, CT imaging plays a vital role in 
surgical intervention planning for spinal tumors, degenerative 
as well as infectious spinal diseases, and can be required for es-

tablishing a precise neuronavigation setup.5,6

Despite advances in radiation technology, patients remain 
exposed to significant doses of ionizing radiation. While the 
average annual background radiation in the United States is es-
timated at approximately 3 mSv, the radiation exposure for a 
lumbar spine CT scan are much lower, typically around 1.5 mSv.7 
However, in cases of polytrauma, extensive examination is indi-
cated so that radiation doses can exceed 20 mSv.8
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Patients with severe spinal cord injuries may also be hemo-
dynamically unstable and require immobilization, making CT 
imaging challenging.9,10 Moreover, due to financial constraints, 
many centers worldwide have limited access to this specialized 
modality.11 To maintain full operational capability, radiographers 
and radiologists are necessary, further adding to the financial 
burden.

Generating 3-dimensional (3D) information from a 2-dimen-
sional (2D) input has the potential to assist in addressing these 
issues. The feasibility of creating synthetic, CT-like 3D imaging 
using deep learning from biplanar chest x-ray images has been 
demonstrated.12 A similar machine learning based application 
for spine imaging, however, is currently missing. In this proof-
of-concept study, the main objective was to assess the feasibility 
of creating synthetic spinal CT images using deep learning by 
using biplanar digitally reconstructed radiographs (DRRs) as 
inputs, serving as a proxy for true biplanar x-ray images.

MATERIALS AND METHODS

1. Overview
Noncontrast enhanced spinal CT scans from 209 patients 

and their DRRs, sourced from the VerSe2020 dataset, were used 
for model development.13-15 The VerSe20 dataset also includes 
manually refined segmentations of the vertebrae. To generate 
2D-to-3D synthetic CT (sCT) images, a generative adversarial 
network (GAN) model was trained on these images, following 
the methodology previously established by Ying et al.12 Model 
evaluation was subsequently carried out on 55 cases from the 
VerSe20 dataset13-15 (internal validation) and a randomly select-
ed subset of 56 patients from the CTSpine1K dataset16 (external 
validation) using structural similarity index (SSIM), peak signal 
to noise ratio (PSNR), and cosine similarity (CS) as metrics.

2. Ethical Considerations
The VerSe20 and CTSpine1K datasets are publicly available 

and ethical approval has been obtained by the original publish-
ers from the corresponding ethics committees.

3. Data Sources
The CT data used for model development and evaluation 

originated from multiple centers and was obtained from the 
VerSe2020 dataset. This publicly available dataset includes spi-
nal imaging from cervical, thoracic and lumbar regions acquired 
on scanners from multiple manufacturers and features a variety 
of pathologies, such as vertebral fractures, deformities, and im-

plants.13-15 For external validation a randomly selected subset of 
56 images originating from the MSD-T10 and COVID-19 da-
tasets, which are both part of the CTSpine1K dataset,16 was ap-
plied. Some further information on the datasets is provided in 
Table 1.

Given the necessity for corresponding radiographs to the CT 
scans, in this feasibility study, DRRs were derived—serving as a 
proxy for true biplanar x-rays. They were generated from the 
3D-CT scans using the Plastimatch software,17 which offers rel-
atively high fidelity to actual x-ray images, making them an ideal 
basis for model training. However, it is important to note that 
DRRs are not exact replicas of conventional x-rays. In order to 
highlight bone structures, Hounsfield units (HU) windowing 
was applied with a window center of 400 HU and a window 
width of 1,300 HU. In addition, the vertebrae segmentations were 
employed to extract the bones. The pelvis and sacrum were ex-
cluded from consideration.

4. Metrics
For assessment of model performance, 3 evaluation metrics 

were employed: PSNR, SSIM, and CS. PSNR serves as a widely 

Table 1. Overview of the dataset partition used in this study

Dataset

Cohort

Training 
(n = 209)

Internal 
validation 

(n = 55)

External 
validation 

(n = 56)

VerSe20
Region (some with more than 1 region)

Cervical 13 (6.2) 6 (10.9)
Thoracic 94 (45.0) 20 (36.4)
Lumbar 183 (87.6) 46 (83.6)

Implant 
Yes 5 (2.4) 1 (1.8)
No 204 (97.6) 54 (98.2)

CTSpine1K subset (MSD-T10 and COVID-19)
Region (some with more than 1 region)

Cervical 0 (0)
Thoracic 24 (42.9)
Lumbar 47 (83.9)

Implant 
Yes 0 (0)
No 56 (100)

Values are presented as number (%).
Some images span more than 1 region, e.g., thoracic and lumbar. 
Mind that the calculated values are based on visual inspection of the 
imaging only.
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accepted quantitative metric for determining the fidelity of re-
constructed digital signals, with higher values indicating supe-
rior image quality.18 SSIM provides a multifaceted assessment 
of image similarity by considering factors like luminance, con-
trast, and structure.18,19 Unlike metrics such as mean squared 
error and PSNR that focus on absolute errors only, SSIM is de-
signed to correspond more closely with human perception of 
image quality. Finally, CS is a can be applied to measure simi-
larity by assessing the cosine of the angle between 2 feature vec-
tors.20 Results for both SSIM and CS range from -1 (completely 
dissimilar) to 1 (identical). As PSNR values depend on the bit 
depth of the image, there is no fixed definition of a good score.18

SSIM is calculated once for all 3 dimensions and averaged 
thereafter. In order to calculate CS images were flattened into a 
1-dimensional vector.

5. Model Development and Validation
All CT scans were resampled to achieve a uniform voxel spac-

ing of 1× 1× 1 mm³ and the image dimensions were standard-
ized to 256× 256× 256 pixels. Thereafter, biplanar DRRs were 
derived for all CT scans. These DRRs acted as the input for both 
training and assessing our GAN model. The CT images were 
then windowed, and the spinal structures extracted as described 
before. Finally, the total number of unique grayscale values was 
compressed to 100, while maintaining the integrity of the over-
all data distribution. This was accomplished through the devel-
opment of a lookup table, which enabled a systematic mapping 
of HU to their corresponding bins (quantization).

A GAN was fine-tuned on the training set, allowing us to 
create sCTs from biplanar DRRs. The basic model architecture 
was adapted from X2CT-GAN,12 and certain parameters were 
adjusted to meet the specific requirements of our task. The final 
model underwent 100 epochs of training with a learning rate of 
0.00005. Final evaluation was carried out on the 2 holdout sets 
to assess PSNR, SSIM, and CS. The sCTs were generated to have 
a resolution of 192× 192× 192 voxels. Fig. 1 schematically de-

Fig. 1. Data extraction, model application and evaluation process. (A) Application of mask and Hounsfield windowing in order 
to obtain ground truth computed tomography (CT) for algorithm training. (B) Generation of digitally reconstructed radio-
graphs (DRRs) using Plastimatch software. (C) Application of the fully trained model to new data and evaluation. 2D, 2-dimen-
sional; 3D, 3-dimensional; GAN, generative adversarial network.

CT

CT Plastimatch

DRRs 2D to 3D GAN Synthetic CT Ground truth CT

Performance metrics

DRRs in two planes

Mask Masking and
Hounsfield windowing Ground truth CT

A

B

C
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picts the data extraction, model application and evaluation pro-
cess. All calculations were performed with Python 3.10.6 and 
PyTorch 1.12.1 for CUDA 11.6.

RESULTS

1. Patient Cohort
Overall, the training phase incorporated data from 209 patients 

while model performance internally and externally evaluated 
using imaging from 55 and 56 patients, respectively.13,15,16

2. Model Performance
Table 2 outlines model performance. A visual comparison 

between synthetic images generated by our GAN and the cor-
responding ground truth data is depicted in Fig. 2 for a case tak-
en from the internal validation and Fig. 3 from the external val-
idation set.

Fig. 4 depicts a comparison in 3D space of the synthetically 
generated spinal column derived from DRRs and the ground 
truth version obtained through manual segmentation.

1) Internal validation performance
When applied to the internal validation data, the model achieved 

a PSNR of 22.206± 1.027 dB (mean± standard deviation). The 
SSIM was found to be 0.953± 0.009 and a CS of 0.709± 0.195 
was obtained.

2) External validation performance
Upon external validation, the recorded PSNR was 21.139±  

1.018 dB. The SSIM and CS were measured at 0.947± 0.010 and 

0.671± 0.691, respectively.

DISCUSSION

Utilizing a multicenter dataset encompassing over 300 pa-
tients, a 2D-to-3D GAN capable of synthesizing spinal CT im-
ages from biplanar radiographs was successfully developed and 

Table 2. Model performance on training and holdout sets

Cohort PSNR (3D) [dB] SSIM (2D) Cosine similarity

Training (VerSe20) (n = 209)

Mean ± SD 27.011 ± 2.955 0.972 ± 0.008 0.908 ± 0.081

Median (IQR) 26.743 (25.989–27.554) 0.973 (0.968–0.977) 0.927 (0.907–0.935)

Internal validation (VerSe20) (n = 55)

Mean ± SD 22.206 ± 1.027 0.953 ± 0.009 0.709 ± 0.195

Median (IQR) 22.419 (21.458–22.801) 0.953 (0.948–0.961) 0.779 (0.728–0.817)

External validation (CTSpine1k subset) (n = 56)

Mean ± SD 21.139 ± 1.018 0.947 ± 0.010 0.671 ± 0.078

Median (IQR) 21.273 (20.514–21.821) 0.948 (0.942–0.953) 0.691 (0.652–0.716)

SSIM is calculated for each dimension individually and then averaged for each image. The final values reported are the mean and median over 
the whole dataset.
PSNR, peak signal to noise ratio; SSIM, structural similarity index; 3D, 3-dimensional; 2D, 2-dimensional; SD, standard deviation; IQR, inter-
quartile range.

Fig. 2. Example of synthetic computed tomography (CT) gen-
erated by our model on the internal validation set. For panels 
A and B from left to right: ground truth CT, manually extract-
ed vertebra from ground truth CT, synthetic CT generated by 
our model. (A) Axial view. (B) Sagittal view. (C) Digitally re-
constructed radiograph derived from the ground truth CT 
and used as model input.

A

B

C
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externally evaluated. In terms of performance, the model yielded 
promising but not fully satisfying results, revealing that while 
the sCT are not able to completely replace traditional CT scans, 
they might offer a viable alternative in certain clinical settings.

The generation of sCT images from x-rays holds promise for 
reducing time, cost, and radiation exposure associated with CT 
scans. Unlike CT, radiographic imaging has major limitations 
to performing 3D anatomical evaluations. This study proposes 
a model capable of generating sCTs using DRRs as input. While 
these synthetically generated images may not match the quality 
of actual CT scans in every respect, it is possible that a more 
advanced version of the model, trained on a larger dataset, at 
higher resolution and on real radiographs instead of DRRs, could 
provide sufficient diagnostic information to make a real CT re-
dundant in specific scenarios. The aim should not be to replace 
CTs as a whole, but much rather extend the current applications 
of radiography machines. We believe that by using x-rays from 
2 planes (anterior-posterior and lateral), it should be possible to 
obtain enough depth information to generate reliable, 3D im-
ages using deep learning. The depth information and consequent-
ly the quality of our synthetic imaging will absolutely be limited 
compared to authentic CTs. Such an application, however, would 
for example be very beneficial in low resource settings, where 

CTs are not accessible but x-ray machines are.
Apart from reducing radiation exposure and improving eco-

nomic efficiency, our model could also directly influence pa-
tient treatment. For instance, fluoroscopy machines are com-
monly used in neurosurgical operating theatres for spinal sur-
geries. By using such fluoroscopic imaging as input, 3D imag-
ing could be generated, thus enhancing orientation and decreas-
ing spatial awareness problems during surgery.

The model training approach we used necessitates manual 
vertebrae segmentation. We discovered that omitting the bone 
extraction leads to less uniform results in the generated sCTs. 
This lack in performance is likely due to the variable character-
istics of the surrounding soft tissue, which appeared to interfere 
with the model’s ability to learn appropriately. Such a manual 
approach dramatically increases the training time and introduc-
es the potential for human error. Additional work, on a new au-
tomated deep-learning segmentation model to streamline the 
training process is ongoing. However, it needs to be reiterated, 
that although the model has been trained semiautomatically, its 
application on new data is already fully automated, as all that is 
required for the generation of the sCT are the biplanar radio-
graphs/DRRs.

Quantization was employed in order to reduce the number of 
individual grayscale images in our CTs while retaining as much 
of the overall data distribution as possible. This significantly de-
creases computational costs of model training with the drawback 

Fig. 4. Reconstruction of the synthetic computed tomography 
generated by the model in 3-dimensional space (case from the 
internal validation set). (A) Ground truth. (B) Model generated.

A B

Fig. 3. Example of synthetic computed tomography (CT) gen-
erated by our model on the external validation set. For A and 
B from left to right: ground truth CT, manually extracted ver-
tebra from ground truth CT, synthetic CT generated by our 
model. (A) Axial view. (B) Sagittal view. (C) Digitally recon-
structed radiograph derived from the ground truth CT and 
used as model input.

A

B

C
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of losing the exact Hounsfield intensities and loosing image depth. 
The exact number of gray shades a human eye can discern is 
debated, however medical displays typically offer 8 bits or 256 
shades of gray.21 In such scenarios, the benefits of higher-depth 
imaging can only be taken advantage of by adjusting contrast 
and brightness. By using a binning approach with 100 bins (gray-
scale units), our method remains below this threshold. However, 
we plan to explore expanding the grayscale range in the future.

It is important to exercise caution when interpreting CS as a 
measure for image similarity. While PSNR and SSIM are estab-
lished metrics for image fidelity assessment, to the best of our 
knowledge, there is no literature available that investigates CS’s 
utility for this purpose. CS is a commonly used similarity mea-
sure applied to text documents, for example for clustering.22 As, 
based on our personal observation, this metric corresponded 
relatively well with our subjective qualitative assessment of the 
synthetic imaging, we decided on including it in our evaluation 
anyway.

Our model performance in terms of SSIM appear quite high, 
reaching 0.947 at external validation. However, it is important 
to note that, as we remove all the soft tissue from our imaging, 
a substantial part of our synthetic and ground truth CTs is made 
up of background. As SSIM is calculated over the entire image 
and the spinal column only constitutes a comparably small frac-
tion of the overall volume, the model easily reconstructs the 
background which results in a high SSIM score.

There have been multiple approaches aimed at generating 
higher-dimensional images from single-plane radiographs.23,24 
However, these approaches lack depth information due to their 
reliance on a single view so that the generated images may not 
offer the accuracy needed for precise diagnostic or surgical plan-
ning. In contrast, deep-learning approaches using multiplane 
radiographs as input in order to create CT-like imaging have 
been successful.12,25 Furthermore, several previous studies de-
scribe spine-specific methodologies to extrapolate 3D informa-
tion from biplanar, 2D radiographic imaging.26-33 Most of these 
studies employed statistical approaches, while only a smaller 
subset has leveraged machine learning. Notably, instead of gen-
erating CT-like imaging, all these investigations focused on gen-
erating 3D models of the spine. To the best of our knowledge, 
only one previous study attempted to apply a GAN in a similar 
fashion for generating synthetic, CT-like spinal images from bi-
planar DRRs.34 Saravi et al.,34 who independently performed 
their study in parallel to ours, used DRRs generated after ex-
traction of the vertebrae for the generation of the sCTs, while 
we derived the DRRs before extraction. Therefore, the DRRs 

used to train our model are more similar to authentic x-rays. 
The major next step towards clinical applicability, however, will 
be applying this technique to real x-rays or fluoroscopy images, 
instead of DRRs.

To translate a model like the one we propose into clinical 
practice, several steps are required. First, the model needs to be 
thoroughly evaluated in silico. To achieve this, it needs to be 
trained on more data originating from as many centers as pos-
sible, while additionally increasing data variability by applying 
data augmentation methods. Future research should also assess 
the performance of the model separately for axial and sagittal 
2D image slices. These 2 planes are of especially high diagnostic 
relevance and axial imaging can only be reconstructed indirectly 
when using anterior-posterior and lateral x-rays as input, pre-
sumably making it more error-prone. Furthermore, future stud-
ies need to perform a more accurate assessment by using real 
radiograph images as input instead of DDRs. Once this has been 
established, clinical trials to assess the model’s utility in clinical 
practice are necessary. This could be accomplished by compar-
ing authentic CT scans to the synthetic imaging for specific in-
quiries such as implant placement after spinal fusion surgery or 
more general diagnostic questions. Only after conducting clini-
cal trials can the true clinical utility of a model, like the one we 
propose, really be understood.

Even though the developed model was trained on a rather 
large and diverse training dataset, encompassing 209 spinal im-
ages that spanned the lumbar, thoracic, and cervical regions, 
more data is likely to improve its performance. This is particu-
larly relevant for spinal imaging as it can exhibit significant vari-
ability between individuals.

Notably, cervical imaging was underrepresented in the train-
ing and evaluation data, and model performance based on spi-
nal region needs to be evaluated in future studies. Similarly, the 
impact of surgical implants on our model’s performance has 
not been assessed yet.

Although established image quality metrics (PSNR, SSIM, 
and CS) were employed, these measurements probably do not 
capture the full clinical utility of the generated sCTs. For a de-
tailed understanding of the model’s applicability, additional clin-
ically relevant metrics need to be included in combination with 
an expert radiological evaluation.

In this proof-of-concept study, we managed to successfully 
externally validate our model. However, to ensure adequate 
generalizability, validation on data from further centers is would 
be beneficial.

Lastly, DRRs were used as training input as a substitute for 
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real x-rays, being an initial proof-of-concept study. DRRs offer 
high fidelity and serve as a useful approximation but they can-
not fully replace conventional x-rays. One of the major challeng-
es we faced in using real x-rays is the lack of correspondence of 
x-rays to CTs in terms of orientation and relative size. Frequent-
ly, the x-ray beam is not perpendicular to the skull, and the dis-
tance from the x-ray source can also vary. It is thus essential for 
future research to explore methods that allow for the use of au-
thentic x-rays as model input.

CONCLUSION

We present a proof-of-concept study of TomoRay, a GAN tar-
geted at generating synthetic CT scans of the cervical, thoracic, 
and lumbar spine from biplanar imaging. While the quality of 
our algorithm-generated CT scans has not yet reached the level 
of authentic CT scans, our study warrants further exploration 
of the potential of this technology.
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