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Objective: Virtual and augmented reality have enjoyed increased attention in spine surgery. 
Preoperative planning, pedicle screw placement, and surgical training are among the most 
studied use cases. Identifying osseous structures is a key aspect of navigating a 3-dimensional 
virtual reconstruction. To automate the otherwise time-consuming process of labeling ver-
tebrae on each slice individually, we propose a fully automated pipeline that automates seg-
mentation on computed tomography (CT) and which can form the basis for further virtual 
or augmented reality application and radiomic analysis.
Methods: Based on a large public dataset of annotated vertebral CT scans, we first trained a 
YOLOv8m (You-Only-Look-Once algorithm, Version 8 and size medium) to detect each 
vertebra individually. On the then cropped images, a 2D-U-Net was developed and exter-
nally validated on 2 different public datasets.
Results: Two hundred fourteen CT scans (cervical, thoracic, or lumbar spine) were used for 
model training, and 40 scans were used for external validation. Vertebra recognition achieved 
a mAP50 (mean average precision with Jaccard threshold of 0.5) of over 0.84, and the seg-
mentation algorithm attained a mean Dice score of 0.75 ± 0.14 at internal, 0.77 ± 0.12 and 
0.82 ± 0.14 at external validation, respectively.
Conclusion: We propose a 2-stage approach consisting of single vertebra labeling by an ob-
ject detection algorithm followed by semantic segmentation. In our externally validated pi-
lot study, we demonstrate robust performance for our object detection network in identify-
ing individual vertebrae, as well as for our segmentation model in precisely delineating the 
bony structures.
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INTRODUCTION

Virtual and augmented reality have enjoyed increased atten-
tion in spine surgery.1-3 Preoperative planning, navigation for 
pedicle screw placement, and surgical training are among the 
most studied areas of application.1 When navigating a 3-dimen-
sional (3D) virtual reconstruction, identifying osseous structures 
on computed tomography (CT) is crucial. To automate the oth-
erwise time-consuming process of labeling vertebrae on each 

individual slice, we propose a fully automated pipeline. Improved 
precision, decreased errors due to human fatigue, and increased 
consistency are suggested as benefits of incorporating automatic 
segmentation into clinical practice.4,5 Also, virtual or augmented 
reality applications or radiomic analysis rely on target structure 
identification and segmentation.6 Spine segmentation has been 
employed for disease diagnosis and preoperative treatment plan-
ning.7,8 Augmented reality navigation has also been shown to 
improve the precision of screw insertion compared to free hand 
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approaches.9 Exact delineations of target structures is necessary 
for this. Convolutional neural networks are increasingly used 
for medical image segmentation.10

U-Nets are frequently used for this task, and their efficacy has 
been sufficiently demonstrated.11-14 Commonly, a region of in-
terest needs to be manually defined first to further divide the 
image into anatomical regions, before segmentation can be per-
formed.4 By applying state-of-the-art object detection methods—
trained on the task of creating bounding boxes around each in-
dividual vertebra—a greater level of automation and potentially 
enhanced segmentation precision could be achieved.15,16

This 2-stage approach enables training convolutional neural 
networks on slices with higher—or even native—resolution, po-
tentially increasing vertebral detection precision. This so-called 
patch-wise segmentation has a variety of benefits, from improved 
memory efficiency to addressing class imbalance of small struc-
tures.17 Various strategies for defining field of views are applied 
in the VerSe 20 Challenge.18 For example, Chen et al.18 use a 3D 
U-Net for localization by initially generating random patches 
and then use these predictions to crop precisely. Payer et al.19 
generate heatmaps of the spine, identify the centroid of the ver-
tebrae and crop a 3D patch around it. Yet, no attempt at using 
You-Only-Look-Once (YOLO) algorithms for patch-generation 
has been made. This allows for adaptive patch size around the 
precise edges of the vertebra. In summary, in this pilot study, 
we evaluate the feasibility of segmenting CTs of the cervical, 
thoracic, or lumbar spine using the proposed 2-stage machine 
learning approach with object detection followed by semantic 
segmentation.

MATERIALS AND METHODS

1. Data Collection and Preprocessing
We utilized 3 datasets: one for training and a subset of 2 oth-

ers for external evaluation.
The dataset used for training is publicly available (VerSe 20 

Challenge) and consists of 214 patients from a variety of centers 
and vendors (Siemens, GE, Philips, and Toshiba). The dataset 
had the following inclusion criteria: Minimum age of 18, 7 fully 
visualized vertebrae (without counting sacral od transitional 
vertebrae) and minimum pixel spacing of 1.5 mm (craniocau-
dal), 1 mm (anterior-posterior), 3 mm (left-right).20 Exclusion 
criteria were traumatic fractures and bony metastases.18,20-22 The 
respective labels (26 different labels for the vertebrae from C1 
to L5) were created through a semiautomated process: Initially, 
suggestions were made by an algorithm, which were subsequent-

ly refined by human experts.18,20,21 Two medical students, spe-
cifically trained on the task, manually corrected the suggestion 
by the algorithm in a laborious process. This was performed in 
the original image space. The labels were subsequently validat-
ed by a neuroradiologist. Since the suggested segmentation mask 
was a 3D volume, we assume that all slice directions were con-
sidered in subsequent refinement process. These labels incor-
porated within the VerSe 20 dataset were used as ground truth 
for model training. For training purposes, this dataset consist-
ing of 214 patients was split into 173 for training and validation 
during training (on a random 20% of the images) and a holdout 
dataset of 41 patients for internal validation.

Subsequently, to evaluate the out-of-sample performance of 
our fully trained method, we chose to test its performance on 2 
other unrelated datasets: for the first external evaluation, we used 
a COVID-19 dataset (CT images in COVID-19) consisting of 
chest CTs captured at the initial point of care23-25 that show the 
thoracic spine. Second, we evaluated our pipeline on 20 liver 
CTs, which span the lumbar and thoracic spinal regions and 
have also been part of a semantic segmentation challenge called 
Medical Segmentation Decathlon, of which we used 1 of the 10 
subsets (MSD T10).26,27 The corresponding ground-truth labels 
were obtained from the CT1kSpine dataset,28 that created them 
in a semiautomated fashion from a nnU-Net that was updated 
every 100 cases. We opted for these 2 external validation datas-
ets for the following reasons. First, they were suitable for our 
purposes since they were publicly available. Second, the manual 
segmentations came from the same dataset as the labels for train-
ing. Third, we wanted to evaluate the robustness of our approach 
on CTs that were not centered on the spine.

2. Preprocessing
We resampled the voxel size to isotropic 1.0 × 1.0 × 1.0 and 

padded the images to be uniform in size for all dimensions. In-
tensities were windowed with a center of 300 and a range of 
2,000 and normalized with respect to their minimum and max-
imum.

3. Model Development
The training process is visually depicted in Fig. 1. First, a YOLO 

algorithm, Version 8 and size medium, (YOLOv8m) was trained 
to regions of interest.29,30 Similar to cars detecting pedestrians,31 
this learned to identify each vertebral body level and to create a 
bounding box for this. These regions were then cropped to the 
box size with a small margin of 5 pixels to ensure all corners of 
the vertebrae were on the smaller image. After cropping, these 
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extracted regions were resized to 256× 256 and used as input 
for 2D-U-Net training.11 As a convolutional network, it extracts 
feature maps in the contracting path. After a rectified linear unit 
activation function introduces nonlinearity, a max pooling op-
eration takes the highest feature from each two-by-two square 
to half the dimensions. Subsequently, the expansion path uses 
transposed convolutions to reverse the reduction in dimension 
of the contracting path. Concatenation of feature maps on each 
symmetrical level helps restore spatial information. Finally, a 
sigmoid activation function assigns pixel-wise values to the seg-
mentation mask. Due to this reduction and expansion in size, 
the architecture can be visualized in the shape of a “U,” hence 
the name of the model architecture. The following platforms 
were used: Python 3.9.0,32 Keras 2.5.0,33 SimpleITK,34 and niba-
bel.35 The training was conducted on a Nvidia RTX 3090 graph-
ical processing unit (GPU).

As a result of hyperparameter tuning, the best-performing 
model was trained for 14 epochs using early stopping. The final 
U-Net architecture consisted of 96 starting neurons, a depth of 
3 with 4 blocks on each level. Binary cross-entropy was used as 
loss function, and a batch size of 80 yielded the best performance.

4. Evaluation
Precision (positive predictive value), recall (sensitivity), and 

mean average precision (mAP) with a Jaccard threshold of 0.5 
(mAP50) were assessed as standard bounding-box evaluation 
metrics.36 Furthermore, mAP50-95, which corresponds to mAP 
with 10 Jaccard score steps from 0.5–0.95 with steps of 0.05, was 
implemented. In those, a box reaching the respective predefined 
threshold is considered to be a true positive. To put this into per-
spective, one of the best values for a benchmark dataset called 
COCO are 0.79 for mAP50 and 0.66 for mAP50-95.37

U-Net performance was determined by comparing Dice score, 

Jaccard score and the 95th percentile of the Hausdorff distance 
of labels and predictions.38-41 Dice and Jaccard score are measures 
of overlap ranging from zero—indicating no congruence—to 
one for a perfect match. While the Dice score is defined as twice 
the area of overlap divided by the sum of both areas, the Jaccard 
score describes the intersection divided by the union. Both met-
rics are ultimately a quotient of the correctly classified region 
and the ground-truth mask. The Hausdorff distance analyses 
the distance between 2 sets of points that are derived from the 
edges of the segmentations.

Evaluation was performed on the held-out VerSe 20 data, as 
well as the 2 external validation datasets. Mean and standard 
deviation as well as median and interquartile range are reported 
where appropriate.

RESULTS

1. Cohort
A total of 173 CT scans were used for training, 41 for internal 

validation, and 20 for each of the 2 external validation sets. Pa-
tient and radiological information, as reported by the respective 
datasets, is summarized in Table 1. The training dataset con-
sisted of (mean± standard deviation [SD]), 523± 48 coronary, 
600± 267 axial, and 537± 358 sagittal slices. The first external 
validation set with liver scans was comprised of 533± 71 coro-
nary, 512± 96 axial, and 533± 71 sagittal slices and the second, 
chest CT dataset, entailed 400± 57 slices in all dimensions. The 
entire VerSe 20 dataset with 300 patients (86 from 2019 with 
lower resolution and 214 new cases) consists of 144 female pa-
tients (48%), with a (mean± SD) age of 56.2± 17.6. A total of 
4,142 (100%) individual vertebrae were labeled, of which 581 
(14%) were cervical, 2,255 (54%) thoracic and 1,306 (32%) lum-
bar vertebrae.

Fig. 1. An exemplary illustration of our pipeline is shown. CT slice as input is used for object detection, then cropped and a 2D-
U-net for segmentation is trained and evaluated. (A) Input image with manual segmentations. (B) Object detections on CT be-
fore cropping. (C) Cropped input image for U-Net. (D) Cropped input mask for U-Net. (E) Thresholded prediction of U-Net. 
(F) Probability map generated from U-Net. (G) Cropped Segmentation to compare U-Net performance. (H) The cropped pre-
dictions are reassembled into a full segmentation. 2D, 2-dimensional.
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2. �Object Detection: Identifying and Labeling Each 
 Vertebral Level
A pretrained YOLOv8m with over 25 million parameters was 

trained on 40’446 images for 57 epochs using an early stopping 
function. Evaluation of the training, internal validation (hold-
out), and pool external validation performance resulted in a 
mAP50-95 of 0.64, 0.63, and 0.09 across all classes. Table 2 de-
picts detailed results per class for all the evaluated datasets. Pre-
cision and recall for different confidence levels are shown in 
Fig. 2. Inference time per slice for training, internal validation 
and pool external validation was 3.2 msec, 3.2 msec, and 5 msec, 
respectively.

3. Semantic Segmentation: Delineating Bony Structures
After object detection, single-vertebral-level cropped images 

were used to train and validate a semantic segmentation net-
work: 94’184 cropped images were used for training. Training, 
internal validation (holdout), and pooled external validation 
showed a mean Dice of 0.75± 0.14, 0.76± 0.12, and 0.79± 0.1695, 
respectively. Detailed results are shown in Table 3. The distribu-
tion of the metrics is presented in Fig. 3. Exemplary results are 
depicted in Fig. 4. Following prediction, the cropped slices were 
reassembled into 3 dimensions. Inference time per slice for train-
ing, internal validation and pool external validation was 68 msec, 
51 msec, and 44 msec.

DISCUSSION

We have developed and validated a pipeline for automated 
whole spine anatomical segmentation combining YOLO object 
detection and a 2D-U-Net for subsequent semantic segmenta-
tion. Generalizability was demonstrated by evaluating the per-

formance on 2 different datasets for external validation. Our 
object detection method showed robust performance. By setting 
a low confidence threshold for detection, the risk of missing out 
on slices to segment is minimized. Segmentation was observed 
to yield robust results as well. At external validation, evaluation 
of our entire pipeline (semantic segmentation results) demon-
strated robustness without signs of overfitting, as segmentation 
performance (incorporating the object detection method as a 
preprocessing step) was equal to training set performance.

Segmentation of medical imaging has become one of the ma-
jor fields of clinical machine learning for many reasons within 
the last decade: Applications such as automated diagnostics and 
volumetric measurements, radiomics, and generation of virtual 
or augmented reality visualizations for demonstration, surgical 
training, and intraoperative navigation all necessitate robust 
methods for segmenting anatomical structures from native x-ray, 
CT or magnetic resonance imaging data.42-44 However, the pro-
cess of manually segmenting images—or manually correcting 
pre-segmented or thresholded images in the sense of semiauto-
mated approaches—is highly time-consuming and would ren-
der broad adoption of the abovementioned applications into 
the clinical routine impossible.45

Machine learning methods have thus markedly helped to cut 
down on time and effort needed for creating segmentations of 
medical images: For example, subarachnoid blood, intra-axial 
brain tumors, or pituitary adenomas can be readily segmented 
in a fully automated approach, in a time-efficient manner.46-48

Normally, medical images are preprocessed and directly seg-
mented by an algorithm, or specific regions of interest have to 
be manually delineated before segmentation, which is resource 
intensive and a potential source of errors. The spine is a large 
anatomical structure with clearly delineated segments (vertebral 
levels) and – at the bony level – regular interruptions (disc spac-
es), which would theoretically enable the use of object recogni-
tion algorithms to parcellate the spine into multiple smaller 
structures. Those extracted subregions can then be fed into al-
gorithms with native or near-native resolution for a more pre-
cise and computationally efficient bony structure delineation. 
In addition, the obvious added benefit of object detection here 
is that vertebral levels are automatically recognized and labeled 
(for example, C7). From a generated segmentation, numerous 
parameters can be extracted. Hohn et al.49 used a simpler thresh-
olding approach combined with manual segmentation of sub-
regions to determine bone quality. Maintaining high resolution 
data of the initial CT only helps generate more accurate estima-
tions of bone mineral density. Siemionow et al.50 assessed vari-

Table 1. Summary of the patient and radiological characteristics

Variable
Dataset

VerSe MSD T10 COVID-19

CT region Spine Liver Chest

Baseline

No. of patients 214 20 20

Age (yr) 59.00 ± 17.00 NA NA

Voxel dimensions

Pixel spacing (mm) 0.34 ± 0.16 0.95 ± 0.11 1 ± 0

Slice thickness (mm) 1.24 ± 0.06 1.04 ± 0.11 1 ± 0

Values are presented as mean ± standard deviation.
CT, computed tomography; NA, not available.
Voxel dimensions were only available for the entire respective dataset.
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Table 3. Performance of the U-Nets during both training and on held-out data

Variable
Dataset

VerSe 20 MSD T10 COVID-19

Performance type Validation Holdout External validation External validation

Dice 

Mean ± SD 0.750 ± 0.137 0.759 ± 0.119 0.770 ± 0.197 0.821 ± 0.142

Median (IQR) 0.793 (0.122) 0.796 (0.128) 0.829 (0.127) 0.861 (0.110)

Jaccard

Mean ± SD 0.615 ± 0.144 0.624 ± 0.134 0.656 ± 0.192 0.715 ± 0.142

Median (IQR) 0.657 (0.162) 0.661 (0.171) 0.708 (0.181) 0.756 (0.168)

95th Percentile Hausdorff distance 

Mean ± SD 12.941 ± 12.346 12.383 ± 10.486 20.810 ± 14.604 22.832 ± 20.868

Median (IQR) 8.062 (7.770) 8.000 (7.597) 18.000 (12.820) 18.028 (27.053)

The metrics of both external validation sets are shown.
SD, standard deviation; IQR, interquartile range.

ous parameters from segmenting spinal subregions. Those in-
clude vertebral body width, spinous process height, pedicle an-
gulation and diameter at the isthmus. This provides the basis 
for automated operative planning, potentially assisting novice 
surgeons or reducing time needed for preoperative planning. 
These 2 examples not only illustrate the potential applications 
of automated spine segmentation, but also show the importance 
of high resolution patches without downsampling of image res-
olution.

We present a pilot study evaluating the feasibility and prelim-
inary results of applying such a 2-stage automated segmentation 
pipeline, and generally shows that the concept is feasible and 
generalizes well to new images. Importantly, the external vali-
dation performance of the entire pipeline (semantic segmenta-
tion) was excellent—while the external validation performance 
of the object detection method itself seemed slightly less robust, 
which is partially inherent to the mAP metric. It is biased by 
model confidence, which tends to be lower during evaluation 
and, therefore, is more likely to fall below our predefined thresh-
old. This trend can be seen in Fig. 2: External validation perfor-
mance at a predetermined low confidence is inferior. Model con-
fidence will be lower on new datasets, especially datasets that 
vary greatly from the training data, such as the liver and chest 
CTs used for external validation. Lower confidences do not nec-
essarily equal worse bounding box generations, and the fact that 
final segmentation performance during external validation (build-
ing on the bounding boxes generated by our object detection 
algorithm) was still excellent is another indicator that our ap-
proach appears robust. Previous work with different approaches 
has yielded similar or even higher segmentation performance 

Fig. 3. Boxplots across all 4 evaluation sets: (A) Dice score, (B) 
Jaccard scroe, (C) 95th percentile Hausdorff distance.
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metrics.18 This can mostly be attributed to 2 factors: First, we 
used rigorous 2-dimensional (2D) metrics since we performed 
our training on slices and not 3D volumes. On average, this will 
result in inferior performance (compared to e.g., 3D metrics), 
especially since we sometimes cropped segmentations made up 
only of a few pixels, and generally evaluated small volumes (spi-
nal segments individually). One wrong pixel consequently has 
a bigger influence on measures of overlap compared to a full 
spinal imaging volume. This can be observed in Fig. 2 where 
the variability in metric performance becomes apparent. Sec-
ondly, our goal was to develop a clinically usable pipeline posi-
tioned at the optimal trade-off point between larger models’ 
demand for more computational resources while not compro-
mising on performance.30 Lastly, we aimed to develop one ap-
proach for the whole spine, whereas many other models are fo-
cused solely on a specific subregion of the spine.

As stated in the proceeding of the VerSe Challenge,18 a clini-
cal spine CT scan is too large for GPU memory, and also for in-
ference on clinical workstations with no designated GPU. Thus, 

either the resolution needs to be downsampled or the initial scan 
needs to be broken down into smaller pieces. As mentioned be-
fore, various techniques for this problem have been applied. We 
attempted to address this by a new, multistaged approach mak-
ing use of the benefits of different models. The YOLO algorithms 
are largely used for real-time object detection, for example in 
autonomous driving where they are appreciated for their speed 
and precision.31 U-Nets have been widely established in the field 
of biomedical image analysis.14 Their main strength lies in pre-
cise segmentation, not detecting multiple objects on a large im-
age. With 2D slices and cropping to a small portion of the initial 
image, we are able to drastically reduce the memory requirements 
of the input of the U-Net. For this pilot study, we also reduced 
image resolution for training, yet this is not a requirement for 
interference. With the implementation of a spatial pyramid pool-
ing at the end of the YOLO architecture different input image 
scales can be efficiently handled.29,51 For future inference, the 
CT could be used in native resolution for detection by the YOLO 
algorithm, and then cropped to the small patches. In then still 

Fig. 4. Exemplary results from external validation set. (A) CT scan from VerSe 20 holdout set. (B) A with overlay of predicted 
mask; red signifies high probability, blue low. (C) Ground truth to A. (D) CT scan from the MSD 10 dataset. (E) D with predic-
tions overlay. (F) Ground truth to D. (G) CT from the COVID-19 set. (H) G with prediction overlay; red signifies high probabil-
ity, blue low. (I) Ground truth to G.
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native pixel scaling, the U-Net can be applied. In summary, we 
took the advantages of both models and combined them for 
optimal performance with reduced computational requirements.

With an ever increasing number of imaging studies carried 
out, automated supportive approaches such as ours can be of 
assistance in clinical practice,43 and accurate segmentation has 
the potential to impact clinical practice and efficiency. With in-
ference times per slice of under 0.1 second for both models com-
bined, they are well below the time manual segmentation re-
quires. While pre- and postprocessing, using a non-GPU envi-
ronment and processing all slices per series requires more time, 
human input time is minimized extensively. Also, our approach 
paves the way for accurate labeling and segmentation of more 
detailed anatomical structures such as foramina, articular pro-
cesses, facets, laminae, and pedicles.

Even though segmentation performance was good at exter-
nal validation, not the entire spectrum of real-world CT data, 
spine anatomy, and pathology are represented by the available 
datasets. Larger and more heterogeneous datasets would be ad-
vantageous to cover more variation. For two of the datasets that 
are fully anonymized, information on patients’ ages are not avail-
able, potentially limiting the generalizability of our results in 
different spine ages, for example in pediatric or geriatric patients. 
Also, training was partially confined in terms of model size and 
image resolution by computational constraints. Yet, smaller mod-
els usually have shorter inference times, which benefits potential 
applications to clinical routine on workstations without desig-
nated graphical processing units for machine learning. Equally, 
the image resolution had to be reduced for processing, resulting 
in pixelated masks if only a small region was cropped and then 
resized. This problem is inherent to our approach but could be 
reduced if training and predicting with higher pixel densities 
was less resource intensive. Finally, some regions of interest can 
be lost even with the high precision of our bounding box algo-
rithm. Interpolating missing slices in postprocessing is feasible 
yet leads to a decrease in precision. Since we only trained on 
sagittal slices, mainly those are well segmented in 3 dimensions. 
Including slices from all dimensions and averaging the 3D pre-
dictions could reduce this effect in future work. Additionally, it 
could be hypothesized that more optimal, yet computationally 
demanding results could be achieved by using a 3D-U-Net. In 
order to minimize the input size, the mask generated by the 
YOLO algorithm could be applied to form a 3D volume, with 
the strategy described in our pilot study.

CONCLUSION

We propose a two-stage approach consisting of single verte-
bra labeling by an object detection algorithm followed by se-
mantic segmentation. In our pilot study, including external val-
idation, we demonstrate robust performance of our object de-
tection network in identifying each vertebra individually, as 
well as for our segmentation model in exactly delineating the 
bony structures.
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