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Proteoglycans through their sulfated glycosaminoglycans regulate cell-matrix signaling dur-
ing tissue development, regeneration, and degeneration processes. Large extracellular pro-
teoglycans such as aggrecan, versican, and perlecan are especially important for the struc-
tural integrity of the intervertebral disc and cartilage during development. In these tissues, 
proteoglycans are responsible for hydration, joint flexibility, and the absorption of mechan-
ical loads. Loss or reduction of these molecules can lead to disc degeneration and skeletal 
dysplasia, evident from loss of disc height or defects in skeletal development respectively. In 
this review, we discuss the common proteoglycans found in the disc and cartilage and elab-
orate on various murine models and skeletal dysplasias in humans to highlight how their 
absence and/or aberrant expression causes accelerated disc degeneration and developmental 
defects.

Keywords: Intervertebral disc degeneration, Proteoglycan, Skeletal dysplasia, Nucleus 
pulposus

INTRODUCTION

Low back pain (LBP) is highly prevalent as age expectancy 
increases, and it is the leading cause of years lived with disabili-
ties worldwide, affecting at least 600 million people globally.1 A 
widely recognized contributor to chronic LBP is the degenera-
tion of intervertebral disc (IVD). The discs are fibrocartilagi-
nous tissues that lie between the vertebrae of the spinal column 
and provide flexibility to the spine and absorbs the mechanicals 
loads during diurnal events.2 During aging, the mechanical 
properties of the disc are often compromised due to structural 
changes in the tissue. Disc and cartilage function depends sig-
nificantly on the integrity and composition of the extracellular 
matrix (ECM) which consists of intricate and finely organized 
networks of collagens and proteoglycans (PGs).3 PGs through 
their sulfated glycosaminoglycans (GAGs) provide an osmotic 
mechanism to attract water molecules into the tissue essential 

to accommodate compressive and tensile loads on the spine 
and joint tissues.4 Aging or genetic mutations in PG genes re-
sult in reduced levels or abnormalities which impair their bio-
logical functions. This review will focus on major PGs in the 
IVD and cartilaginous tissue and their contribution to disc pa-
thologies and skeletal dysplasias.

PGs generally consist of a core protein covalently attached 
with one or more GAG chains joined through a tetrasaccharide 
bridge at a serine residue. These GAGs, typically long polysac-
charides with repeating disaccharide structures, are categorized 
into 4 groups: chondroitin sulfate/dermatan sulfate (CS/DS), 
heparan sulfate (HS), keratan sulfate (KS), and hyaluronic acid 
(HA).5 The biosynthesis process of GAGs, specifically HS and 
CS, is tightly regulated in order to maintain their constant con-
centration within the tissue. Alteration in HS or CS GAG levels 
can affect tissue development, physiological, or pathological 
processes.6,7 Briefly, the process of GAG synthesis requires 5 uri-
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dine diphosphate (UDP) derived activated sugars such as UDP-
glucuronic acid (GlcA), UDP-N-acetylglucosamine (GlcNAc), 
UDP-xylose (Xyl), UDP-galactose (Gal), and UDP-N-acetyl-
galactosamine (GalNAc).5 These sugars are transported from 
the cytoplasm to the Golgi apparatus where a series of glycosyl-
transferases assemble the tetrasaccharide bridge. GAG synthe-
sis begins when xylosyltransferases (encoded by XT1 or 2) add 
Xyl to a serine residue on the core protein, followed by galacto-
syltransferases I (B4GALT7) and II (B3GALT6) which add 2 
Gal sugars. Next, a glucuronyltransferase (B3GAT3) adds GlcA 
to assemble a common tetrasaccharide bridge containing GlcAβ1- 
3Galβ1-3Galβ1-4Xylβ1-O-Ser.5,8,9 The subsequent addition of 
GalNAc by GALNACT2 or GlcNAc by EXTL3 will then initiate 
the commitment for either CS or HS biosynthesis.8 The regula-
tion of GAG biosynthesis in the context of disc biology is fur-
ther discussed by Silagi et al. and others.9,10 All GAGs, except 
HA, undergo a sulfation process in the Golgi where sulfotrans-
ferases catalyze sulfate donor compound 3́ -phosphoadenosine-
5́ -phosphosulfate (PAPS) to modulate their sulfation profile.5 
Alterations in sulfation profiles can modulate the critical physi-
ological functions of PGs in developing tissues often leading to 
chondrodystrophies.11 Based on the recent classification of ge-
netic skeletal disorders, mutations of ion transporter-related or 
sulfation-related genes such as SLC26A2, PAPSS2, IMPAD1, 
CHST3, SLC35B2, CHST14, DSE, CHST11, HS2ST1, SLC13A1 
result in achondrogenesis, chondrodysplasia, Ehlers-Danlos 
syndrome, osteochondrodysplasia, brachydactyly, overlapping 
malformed digits and developmental delays, and disc degenera-
tion.11-13 Importantly, defects in matrix recycling by autophagy 
observed in lysosomal storage disorders are equally detrimental 
to skeletal tissues and during development.14

It is important to mention here that PGs were previously clas-
sified either by GAG type or PG size due to their heterogeneity. 
To simplify PG classification, Iozzo and Schaefer proposed to 
categorize mammalian PGs into 4 overarching classes based on 
their locations: extracellular, pericellular, cell surface, and intra-
cellular.15 In the context of the joint, PGs are present on the cell 
surface and within the ECM of the growth plate, articular carti-
lages, and IVD. During development, these macromolecules 
can interact with constituent growth factors, cytokines, mor-
phogens, and chemokines to influence cell adhesion, morphol-
ogy, proliferation, migration, and differentiation.16 Major PGs, 
including aggrecan, versican, perlecan, and cell surface PGs 
such as glypicans and syndecans, particularly syndecan-4, and 
a few small leucine-rich proteoglycans (SLRP), such as biglycan 
and decorin, fibromodulin, and lubricin are abundant in the 

articular cartilage and the disc to aid in tissue hydration, bio-
mechanical function and cell signaling events (Fig. 1A and B). 
These will be discussed in detail below (Table 1).

STRUCTURE AND FUNCTION OF 
PROTEOGLYCANS IN 
MUSCULOSKELETAL PATHOLOGIES

1. Extracellular PGs
ACAN encodes for aggrecan, the most abundant PG in the 

IVD and joint cartilage. Aggrecan bears negatively charged KS 
and CS GAG side chains providing cartilage with its ability to 
bind water for hydration and withstand large compressive loads.17 
Structurally, aggrecan consists of a core protein with 3 disulfide-
linked globular regions (G1, G2, G3) with intervening extended 
regions between G2 and G318 (Fig. 1A). Between the amino ter-
minal G1 and G2 domains is the interglobular domain (IGD), a 
prominent proteolysis site that is thought to be involved in the 
physiological turnover of aggrecan.19 Following the G2 domain, 
the core protein is decorated with approximately 30 KS chains 
and 100 CS chains in the CS1 and CS2 domains; these domains 
are responsible for the water-binding property and its function 
as a structural PG. The G3 domain of aggrecan resides at the 
carboxy-terminal and is a complex region that is required for 
post-transcriptional processing.19 Aggrecan does not exist in 
isolation within the ECM but is instead composed of aggrecan 
supramolecular aggregates (Fig. 1B). These supramolecular ag-
gregates form when multiple aggrecan molecules noncovalently 
attach to a link protein-bound HA filament.20 Molecularly, the 
G3 domain is essential for sufficient modification of GAGs; 
without this, the CS-containing constructs are not secreted. In 
the developing skeleton, aggrecan expression is confined to 
chondrocytes and other cartilaginous tissues.21

The importance of aggrecan in cartilage was first illustrated 
in the embryonically lethal nanomelia affecting cartilage devel-
opment in chickens22 and cartilage matrix deficiency (cmd) in 
mice resulting in cleft palate, dwarfism, abdominal compres-
sion, and respiratory failure after birth.23-25 Interestingly, hetero-
zygous cmd mice appeared normal at birth, however, age-asso-
ciated skeletal defects such as dwarfism and spinal misalign-
ment began to show at 19-month of age.26 The underlying 
mechanism in lethal nanomelia avian mutation is a transver-
sion creating a premature stop codon, truncating part of CS2 
and G3 domains and significantly reducing the steady-state 
level of aggrecan messenger RNA (mRNA).27 The residual 
mRNA gets translated but is not secreted into the ECM,28 thus 
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accumulating in the endoplasmic reticulum.29 Similar to nano-
melia, cmd in mice also results in reduction of aggrecan mRNA 
expression and secretion of aggrecan into the ECM.26 These 
detrimental effects foreshadowed the outcome of ACAN muta-
tion in humans, discussed in a later section.

Versican, another large extracellular proteoglycan encoded by 
VCAN, is structurally related to aggrecan, possessing a terminal 
domain analogous to aggrecan’s G1 and G3 regions, however it 
does not contain IGD, a G2 domain, and KS GAG attachment 
sites (Fig. 1A).15 To date, 5 isoforms of versican (V0–4) have 
been identified: the full-length versican (V0) and 3 splice vari-
ants that lack GAGα (V1), GAGβ (V2), both GAGα and GAGβ 
(V3), and portion of GAGβ (V4).15 During development, full-

length versican is prominently expressed throughout the IVD.30 
As the disc matures, its expression decreases throughout but re-
mains prominent between the lamellae of the annulus fibrosus 
(AF).30,31 Functionally, based on its structure and localization 
with elastin and fibulin-1, a glycoprotein that is incorporated 
into fibrillar ECM, versican is suggested to contribute to the or-
ganization of the disc ECM and provide structural support and 
resilience to mechanical forces.31 In cartilage development, the 
balance of versican expression is important in mediating local 
transforming growth factor beta (TGF-β) in chondrocyte dif-
ferentiation and digit joint formation.32-34 Reductions in versi-
can can compromise chondrogenesis and synovial joint devel-
opment.35 Mutations in the human versican gene result in the 

Fig. 1. Illustration of major proteoglycans and glycoproteins in the intervertebral disc in healthy versus disease state. (A) Illustra-
tions showing the structures of aggrecan, versican, perlecan, lubricin, syndecan-4/SDC4, decorin, biglycan, and fibromodulin. 
(B) In healthy state, there is an abundance of large proteoglycans that maintain tissue hydration and collagen fibril integrity. In 
disease state or aging, (B1) there is an elevated level of cytokines including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 
which promote degenerative processes and expression of SDC4. (B2) Induction of SDC4 promotes a proteolytic event where 
(B3) ADAMTS-5 and matrix metalloproteinases cleave the disc extracellular matrix. ADAMTS-5, a disintegrin and metallopro-
teinase with thrombospondin motifs 5; HA, hyaluronic acid; HS, heparan sulfate; GAG, glycosaminoglycan; PEX, hemopexin; 
TMD, transmembrane domain; KS, heparan sulfate.

A

B
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Table 1. Animal models of proteoglycan dysfunction and mutations

Species Gene Disease model/
disorder Mutation Effect Phenotype References

Chicken Acan Nanomelia Nonsense  
mutation

Transversion c.4537G>T: convert 
glutamate at 1513 to a stop  
codon, creating defect in CS2 
and G3 domain. Truncation of 
aggrecan; accumulation in ER

Embryonically lethal, short-limb 
dwarfism, large, brachycephalic 
head, abnormal mandible, and 
maxilla

Li et al.,28 1993; 
Vertel et al.,29 
1993 

Mouse Acan Cartilage  
matrix  
deficiency 
(cmd/cmd)

7bp deletion in 
exon 5

Deletion of B subdomain of  
N-terminal globular G1 domain, 
which binds to HA Aggrecan, 
results in truncation and  
secretion of mature aggrecan 
product in the matrix

Dwarfism, enlarged abdomen, short 
snout, cleft palate, and protruding 
tongue, respiratory failure related 
to pulmonary hypoplasia

Watanabe et al.,25 
1994

Mouse Acan Cartilage  
matrix  
deficiency  
(cmdbc)

Deletion of  
exons 2–18

Deletion of the globular domains 
G1, G2, and GAG regions KS, 
CS1, and C2 domains.  
Consequent in aggrecan  
truncation

Dwarfism, enlarged abdomen, 
short snout, cleft palate, and  
protruding tongue

Krugger Jr et al.,24 
1999

Mouse Bgn Bgn-/0 Deletion of 
exon 2

Biglycan deficient Thin dermis, low bone mass, larger 
irregular collagen fibril

Xu et al.,46 1998; 
Chen et al.,45 2002

Mouse Bgn; 
Dcn

Bgn-/0 Dcn-/- Double deletion 
using Bgn-/0 
and Dcn-/-

Biglycan and decorin deficient Compounding effect with loose 
disorganized dermis, larger highly 
irregular collagen fibrils in tendons

Robinson et al.,51 
2017

Mouse Dcn Dcn-/- Deletion of 
exon 2

Decorin deficient Thin dermis, low bone mass, larger 
irregular collagen fibril

Danielson et al.,48 
1997

Mouse Fmod Fmod-/- Deletion of 
exon 2

Fibromodulin deficient Abnormal tissue organization, thin 
collagen fibril diameter; abnormal 
dentin mineralization and alveolar 
bone formation

Gill et al.,56 2002; 
Ameye et al.,59 
2002; Goldberg 
et al.,61 2009

Mouse Hspg2 Hspg2-/- Deletion of 
exon 6

Mutant perlecan allele is tran-
scribed, truncated protein 
could not be detected with a 
domain I–specific polyclonal 
antibody. Truncated form of 
domain I is not properly fold-
ed and is consequently de-
graded intracellularly as soon 
as it is translated

Homozygous mice died between 
E10–12 and perinatally. Embryos 
develop severe defect in cartilage, 
a tissue that lacks basement 
membranes. Reduced fibrillar 
collagen network shortened  
collagen fibers, and increased  
expression of cartilage ECM genes. 
Expansion of neuroepithelium, 
neuronal ectopias, and exencephaly

Costell et al.,87 
1999

Mouse Hspg2 Hspg2C1532Y−Neo Substitution 
mutation

G-to-A substitution at Hspg2 
nucleotide 4595, change amino 
acid from C to Y at residue 
1532. Disrupt disulfide bond 
formation within perlecan  
domain III, thus affect perlecan 
conformation

Reduction of perlecan. Altered matrix 
organization and stiffness as 
function of age and genotype. 
Short stature, impaired  
mineralization, misshapen bones, 
osteoarthritis-like joint dysplasias 
and myotonia. Associated with 
SJS disease in humans

Rodgers et al.,89 
2007; Xu et al.,90 
2016; Ocken  
et al.,91 2020

Mouse Hspg2 Hspg2Δ3/Δ3 Deletion of 
exon 3

Perlecan is devoid of ~20 kDa of 
domain I of its core protein 
and the GAG chains normally 
attached to this region; there 
was no detectable GAG substi-
tution in domain V

GAGs accumulation in the nucleus 
pulposus, annulus fibrosus, and 
vertebral growth plates. Advanced 
chondrocyte hypertrophy and 
exostosis-like, ectopic bone  
formation at the cartilaginous 
endplate region

Shu et al.,92 2019

(Continued)
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Table 1. Animal models of proteoglycan dysfunction and mutations (Continued)

Species Gene Disease model/
disorder Mutation Effect Phenotype References

Mouse Prg4 Prg4-/- Deletion of 
exon 6

Removal of mucin-like domain; 
lubricin deficient 

Accelerated synovial hyperplasia, 
disappearance of superficial zone 
chondrocytes. Increase articular 
surface friction, increase apparent 
torsional modulus in L1/2 disc, 
thinner AF

Rhee et al.,41 2005; 
Teeple et al.,111 
2015

Mouse Sdc4 Sdc4-/- Deletion of exon 
2-part of 4

Deletion of ectodomain with 
three putative glycosaminoglycan 
attachment sites

Impaired wound healing and  
angiogenesis. Syndecan 4 regulates 
ADAMTS-5 and MMP3 under 
inflammatory milieu to degrade 
aggrecan. Essential for endochondral 
ossification to repair fracture 
healing. Exhibits smaller muscle 
fiber, defect in muscle regeneration 
after damage and myogenic  
satellite cell differentiation

Ishiguro et al.,74 
2000; Echtermeyer 
et al.,75 2001;  
Cornelison et al.,77 
2004;  
Bertrand et al.,76 
2013; Rønning 
et al.,78 2020;  
De Rossi et al.,76 
2021

Mouse Tnmd Tnmd-/- Deletion of 
exon 1

Tenomodulin deficient Advanced degenerative of the disc, 
increase hypertrophic-like  
chondrocytes, apoptosis, small 
collagen fibrils with low compressive 
stiffness. Abnormal collagen I 
cross-linking, inferior endurance 
running performance

Lin et al.,110 2020; 
Docheva et al.,63 
2005; Dex et al.,64 
2017

Mouse Vcan Prx1-Vcan Deletion of 
exon 2

Deletion of G1 domain; affect 
biosynthesis of versican

Distorted digits, tilted Joint surface 
and delayed cartilage development

Choocheep et al.,33 
2010; Higuchi  
et al.,34 2021

ER, endoplasmic reticulum; HA, hyaluronic acid; GAG, glycosaminoglycan; ECM, extracellular matrix; SJS, Schwartz-Jampel syndrome; AF, 
annulus fibrosus; ADAMTS-5, a disintegrin and metalloproteinase with thrombospondin motifs 5; MMP3, matrix metalloproteinase-3.

dominantly inherited Wagner syndrome, caused by a base sub-
stitution mutation of VCAN at exon 8 that produces less V1 
and more V2 and V3 isoforms, which is associated with pro-
gressive vision loss.36

Encoded by PRG4, proteoglycan 4 or lubricin is a mucinous 
glycoprotein and an atypical proteoglycan that covers the carti-
lage and prevents it from cartilage damage. Its structure consists 
of 2 adhesive nonglycosylated subdomains flanking a heavily 
glycosylated and mucin-like central domain region. The amino 
terminus possesses a somatomedin-B-like domain while the 
carboxyl terminus has a hemopexin domain, both of which are 
responsible for mediation of cell-cell and cell-matrix interac-
tions to promote cell attachment37,38 (Fig. 1A). The central do-
main mostly consists of GalNac, Gal, and NeuAc sugar groups 
O-linked at threonine residue, making it negatively charged 
and creating a strong repulsion via hydration forces.37 Lubricin 
is found in the synovial joint, coated on the cartilage surface, 
and detected at markedly higher levels in the IVD compart-
ments compared to other cartilage subtypes.39,40 Lubricin dele-

tion (Prg4-/-) in mice by excision of exon 6, removing mucin-
like domain, results in age-associated accelerated synovial hy-
perplasia, abnormal protein deposits on the cartilage surface, 
and disappearance of underlying superficial zone chondrocytes 
ultimately contributing to joint failure.41 Since lubricin is de-
tected at a high level in the disc, its absence may be consequen-
tial to its integrity as discussed later.

Biglycan is a small ECM PG that is ubiquitously expressed in 
the articular regions, epiphyseal cartilage, vascular canals, and 
periosteum during development.42 It was reported to contribute 
to bone growth, muscle development and regeneration, and 
collagen fibril assembly. Biglycan contains 2 CS or DS GAG 
chains at serine-glycine attachments sites in the N-terminal re-
gion (Fig. 1A). It can bind to TGF-β,43 and modulate bone mor-
phogenetic protein (BMP)-4 to influence osteoblast differentia-
tion and maturation in bone development.44 Located on the X 
chromosome region Xq28, genetic mutation of BGN affects 
males more than females. Early work on Bgn deficient male 
mice (Bgn-/0) showed early onset of osteoporosis-like pheno-
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type, skeletal abnormalities, and disc degeneration.45-47 Closely 
related to biglycan is the SLRP decorin, sharing > 65% of its 
overall homology. It is encoded by DCN and only has one GAG 
chain (Fig. 1A). It is known for decorating along fibrillar colla-
gen and regulates the association of collagen into proper fibrils 
protecting them from proteolysis15 (Fig. 1B). Deletion of deco-
rin in mice (Dcn-/-) results in fragile skin and tendons along 
with coarser and irregular fiber outlines without affecting bone 
mass.48 In cartilage, decorin mediates matrix integrity and bio-
mechanical functions by enhancing the linkages and assembly 
of aggrecan-aggrecan molecules and aggrecan-collagen II fi-
brils.49 Since biglycan and decorin are highly homologous and 
co-expressed in tissues such as skin and bone, double deletion 
of biglycan and decorin (Bgn-/0 Dcn-/-) mice revealed com-
pounding effects on skin fragility, severe osteopenia, and altera-
tion of collagen fibril structure and mechanical properties of 
tendons.50,51 SLRPs fibromodulin and tenomodulin are also 
present in cartilage, tendon, and ligament ECM and contribute 
to the structural integrity of these tissues. Fibromodulin, en-
coded by FMOD, is a KSPG SLRP highly homologous with bi-
glycan and decorin (Fig. 1A). It bears KS chains and binds to 
collagen I via residues located in leucine-rich region 11 in the 
convex surface of the protein core at a different region than 
decorin binding site.52,53 Specifically, it interacts with triple-heli-
cal type I and II collagens,54 regulates fibrillogenesis and colla-
gen fibril size,55 and maintains long-term tissue integrity within 
the knee56 (Fig. 1B). During collagen proteolysis, fibromodulin 
gets cleaved by a disintegrin and metalloproteinase with throm-
bospondin motifs 4 and 5 (ADAMTS-4 and-5) and matrix me-
talloproteinase-13 (MMP-13).57,58 Deletion of fibromodulin in 
mice (Fmod-/-) results in abnormal tissue organization in the 
cross-sections of the tail, a larger proportion of thin collagen fi-
bril diameter in the Achilles tendons, higher histological arthri-
tis score, and abnormal dentin mineralization and alveolar bone 
formation.55,56,59-61 Similar to Bgn-/0 Dcn-/- double knockout, bi-
glycan and fibromodulin double knockout (Bgn-/0 Fmod-/-) mice 
have impaired collagen fibrils in the tendons. This leads to gait 
impairment, increased ectopic tendon ossification due to in-
creased use of leg joints, and severe premature osteoarthritis.59 
Furthermore, these mice develop accelerated temporomandib-
ular osteoarthritis due to accelerated chondrogenesis secondary 
to reduced levels of sequestered TGF-β1 in the ECM, leading to 
overcompensation of overactive TGF-β1 signal transduction.62 
Tenomodulin regulates tenocyte proliferation in tendons63 and 
is required for proper collagen I cross-linking; deletion of te-
nomodulin (Tnmd-/-) in mice resulted in abnormal collagen I 

cross-linking and increased collagen fiber thickness and stiff-
ness, leading to inferior endurance running performances.64,65

2. Cell Surface PGs
Syndecans have a single-pass transmembrane protein core 

which includes an ectodomain bearing HS-chain or HS/CS chains, 
a transmembrane region, and an intracellular cytoplasmic do-
main. The cytoplasmic domain comprises of 2 conserved con-
stant regions, C1 and C2, flanking a variable region, V1, that are 
responsible for syndecan-specific signaling66-69 (Fig. 1A). There 
are 4 syndecan family members: syndecan 1-4 (encoded by 
SDC1-4). Sdc1 and Sdc3 are the largest family members bearing 
2 CS chains and several HS chains, while Sdc2 and Sdc4 are 
smaller and only bear HS chains.67 All are intrinsically disor-
dered and dynamic, enabling them to interact with numerous 
ligands including fibroblast growth factor (FGF), vascular en-
dothelial growth factor (VEGF), platelet-derived growth factor, 
BMP-2, and Indian hedgehog (IHH).66,70 While Sdc1-3 are 
found in specific tissue types, Sdc4 is ubiquitously expressed in 
most tissue types. Sdc4 functions as a receptor or co-receptor to 
ligands strengthening the duration and intensity of downstream 
signaling. It can also form physical connections with the ECM 
and activate mechanosensory signaling to influence cytoskele-
tal reorganization during migration and the assembly and dis-
assembly of integrin complexes at focal adhesion sites.66,71 Dur-
ing early embryo development of Xenopus laevis, gain- and loss-
of-function experiments showed that the balance of Sdc4 ex-
pression was crucial in regulating the convergent-extension 
movement in neural tube closure and neural crest-directed mi-
gration through the noncanonical Wnt pathway by its interac-
tion with Frizzled 7 (Fz7) and Dishevelled (Dsh).72 Similar to X. 
laevis, Sdc4 is expressed during murine development in the cra-
nial neural folds on embryonic day 8–8.5 and is regulated by 
Vangl2 during neural tube closure.73 Unlike X. laevis, Sdc4-null 
mice have no obvious developmental defects besides delayed 
wound healing, impaired angiogenesis, and defects in muscle 
regeneration after damage and myogenic satellite cell differenti-
ation.74-78 In recent years, we and others have reported that cy-
tokines tumor necrosis factor alpha (TNF-α) and interleukin 1 
beta (IL-1β) induce Sdc4 expression to mediate different mus-
culoskeletal pathologies including rheumatoid arthritis, osteo-
arthritis (OA), and IVD degeneration.79-81 Moreover, inhibition 
or blocking of Sdc4 under inflammatory conditions prevents 
exacerbation of cartilage deterioration.79
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3. Pericellular Proteoglycan
HSPG2 encodes for the secreted perlecan, a large basement 

membrane HS proteoglycan presents in several ECM tissues 
including cartilage and the disc. The core protein of perlecan 
consists of 5 domains (domain I–V) with tandemly repeating 
modular motifs resembling “pearls-on-a-string,” 2 of which 
(domain I and V) possess HS GAG attachment sites82 (Fig. 1A). 
Perlecan expression has been well characterized in the early 
stages of embryogenesis in murine models. It appears as early 
as E10.5 in the heart, pericardium, blood vessels, and develop-
ing vertebral cartilage83 and is highly expressed in cartilage pri-
mordia at E15.5.84 Perlecan is expressed ubiquitously in muscle 
and bone marrow enabling homeostatic regulation of biological 
processes, such as the formation of cardiovascular tissue, local-
ization of acetylcholine esterase to neuromuscular junctions,85 
and formation of bone.86 Ablation of perlecan in mice (Hspg2-/-) 
resulted in significant embryonic lethality due to pericardial 
hemorrhaging from defects in basement membranes and bio-
mechanical deterioration of the contracting myocardium be-
tween E10–12.87,88 However, the few mice that survived birth 
died with skeletal dysplasia characterized by micromelia, nar-
row thorax, and craniofacial abnormalities, similar to skeletal 
defects of patients with lethal dyssegmental dysplasia, Silver-
Handmaker type (DDSH).88 Furthermore, perlecan-null carti-
lage exhibited reduced GAGs, disorganized collagen fibrils, di-
minished chondrocyte proliferation, and prehypertrophic zones; 
all of which contributed to abnormal skeletal phenotypes simi-
lar to those of patients with thanatophoric dysplasia type I, which 
is caused by activating mutations in FGFR3.88 Since no homo-
zygous knockout mice survived, hypomorphic Hspg2C1532Y−Neo 
mice were generated to study nonlethal skeletal dysplasia mim-
icking Schwartz-Jampel syndrome (SJS) in humans.89 These hy-
pomorphic Hspg2C1532Y−Neo mice have C1532Yneo mutation in 
domain III of perlecan, resulting in reduced perlecan expression, 
reduced cellular and ECM stiffness and defective pericellular 
matrix formation, potentially from impaired incorporation of 
newly synthesized ECM.89-91 Given that perlecan was also ob-
served in developing vertebral cartilage, another perlecan mu-
rine model lacking exon 3 (Hspg2Δ3/Δ3) was generated to study 
the role of Hspg2 in the disc. Perlecan exon 3 encodes perlecan 
domain I, and its deletion in Hspg2 exon 3 null mice resulted in 
a 22 kDa size reduction in the perlecan core protein.92 As a re-
sult, Hspg2Δ3/Δ3 mice had a higher GAG content in IVDs, ad-
vanced chondrocyte hypertrophy in the cartilage, and disorga-
nization of the growth plate.92

PROTEOGLYCAN-LINKED DISC 
PATHOLOGIES

The IVD is an avascular organ composed of a collagen-rich 
AF that encompasses the gelatinous PG-rich nucleus pulposus 
(NP) center; both compartments are anchored by superior and 
inferior endplates composed of a hyaline cartilaginous and bony 
endplate region. In young healthy disc tissue, the NP ECM is 
mainly composed of aggrecan and versican whose functions are 
to elevate water swelling potential and resist spinal compression. 
These PGs bear negatively charged CS side chains that draw in 
hydrated osmolytes, such as cations (Na+, Ca2+), ultimately cre-
ating a hyperosmotic environment.9 TonEBP/NFAT5 is the only 
known mammalian osmo-sensitive transcription factor that 
plays an important role in NP cell osmoadaptation and survival 
within hyperosmotic environment of the disc.93-95 AF, on the 
other hand, is composed of mainly collagens I and II to provide 
tensile strength. In degenerative disc pathologies under the ag-
ing or injury contexts, there is a marked loss of water-binding 
PGs and an increase of ECM remodeling that results in biochem-
ical and biophysical changes in the disc.4 These changes include 
decreased PG synthesis and increased aggrecan proteolysis by 
ADAMTS-4 and-5 and MMPs.96 In addition to these proteases, 
cytokines including TNF-α, IL-1β, and IL-6 are important me-
diators of degenerative cascade under the inflammatory milieu.97

Aggrecan is an essential component in the disc. As the disc 
ages, decreased aggrecan levels and functionality is observed. 
This is either due to a decrease in PG synthesis or an increase of 
PG degradation, shifting the balance from a proteoglycan-rich 
to collagen-rich profibrotic environment. In relatively healthy 
human NP tissue that correlated with gross morphologic Thomp-
son grade of 2 (1 being the healthy and 5 being the most degen-
erated state), the GAG to hydroxyproline ratio was about 23:1; 
however, in the tissue with a Thompson grade of 4, the GAG to 
hydroxyproline ratio was reduced to about 5:1.98,99 As discussed 
earlier, cmd heterozygous mice cause spinal misalignment and 
movement problems with age due to impaired secretion or 
truncation of aggrecan.26 To characterize the phenotypic and 
morphologic effects of aggrecan deletion on skeletal develop-
ment, Lauing et al.100 developed an ACAN mutation disease 
model in cmd mice (cmdbc/cmdbc) where the entire protein-cod-
ing sequence was deleted. This yielded severe skeletal defects in 
the limbs, ribcage, and vertebrae development with abnormal 
mRNA expression patterns of Col10a1, Sox9, Ihh, Ptch1, and 
Fgfr3 in the growth plate. However, when homozygous cmdbc 
was rescued with chick aggrecan transgene (cmdbc/cmdbc;Agc/+), 
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skeletal defects were reversed by 20% in limbs and 80%, near-
full reversal, in size and diameter of the ribcage and vertebrae.100 
This suggests that aggrecan has a major role in regulating key 
growth factors during development, especially in the develop-
ment of axial skeletal structures like ribcage and vertebrae. Note-
worthy, these detrimental effects likely foreshadowed the out-
come of ACAN mutation in humans. While the ACAN gene 
mutation has not been specifically reported to cause human 
degenerative disc disease, heterozygous ACAN mutation is as-
sociated with both idiopathic short stature and accelerated bone 
aging which predisposes to early onset of lumbar disc degener-
ation or herniation.101,102

As mentioned, loss of aggrecan in disc pathology may be due 
to increased matrix degradation. Barre et al.103 reported a sig-
nificant increase in SDC4 mRNA expression in damaged hu-
man cartilage cultured primary monolayers compared to nor-
mal cartilage tissue, suggesting SDC4 was a likely contributor to 
the disorganization of cartilage and the development of OA 
processes. The Risbud group was the first to show enriched 
Sdc4 expression within the disc tissue104 and the importance of 
HS synthesis in regulating matrix catabolism under an inflam-
matory milieu, mediating ADAMTS-5 activity to cleave aggre-
can.81 Specifically, our findings showed that cytokines TNF-α 
and IL-1β regulate Sdc4 expression via the nuclear factor kappa 
B (NF-κB)-p65/RelA dependent mechanism to activate AD-
AMTS-581 and induce expression of MMP-3 through the mito-
gen-activated protein kinase–NF-κB axis.105 Importantly, analy-
sis of degenerated human NP tissues showed a strong correla-
tion between SDC4, ADAMTS-5, and cleaved aggrecan neo-
epitopes.81 To investigate whether Sdc4 deletion could delay the 
disc degeneration, we characterized the spinal phenotype of 
Sdc4 null mice. Our findings show that Sdc4 deletion results in 
early-onset osteopenia and alters biomechanical properties in 
the lumbar vertebrae due to the dysregulation of osteoclasto-
genesis. Congruent with this finding, a previous study demon-
strated that the GAG-bearing ectodomains of syndecans 1–4 
suppressed osteoclast differentiation.106 Furthermore, discs of 
adult Sdc4 knockout showed alterations in mature collagen cross-
linking, CS content, and aggrecan turnover by aggrecanase. In-
terestingly, histological assessment of Sdc4 knockout mice showed 
subtle cellular phenotypes with NP cells containing larger vacu-
oles and a thicker NP cell band. Importantly, the transcriptomic 
analysis suggested that Sdc4 deletion downregulates genes asso-
ciated with mitochondrial metabolism, autophagy, ER to Golgi 
protein processing, and HS biosynthesis and GAG degradation. 
These findings indicate that deletion of Sdc4 reduces matrix 

turnover which is speculated to be responsible for CS accumu-
lation and GAG degradation in NP tissue.107 Other investigators 
using Has2- and Sulf1-knockout mice have demonstrated the 
important of GAG function in PGs. Changes in hyaluronan 
synthesis and sulfation of GAG profiles can alter the structure 
and function of PGs. Specifically, HAS2 and SULF1 are impor-
tant in HA synthesis and sulfation of GAGs, respectively, and 
their deletion resulted in defects of skeletal development, for-
mation of IVDs,108 and disc degeneration.109

Collagens are also important structural molecules that pro-
vide structural integrity to the disc. Biglycan, tenomodulin, and 
lubricin are all key mediators in helping collagen maintain its 
organization, structure, and lubrication. Bgn deficient (Bgn-/0) 
mice exhibited loss of notochordal cells at 6 months with ad-
vanced degenerative changes at 9 months. These changes were 
thought to have been caused by a loss of structural stability in 
collagens, leading to increased mechanical stress resulting in 
premature disc degeneration.47 A study of Tnmd-/- mice also 
showed advanced degenerative changes in the NP and inner 
AF of the disc, increased hypertrophic-like chondrocytes and 
apoptosis, decreased disc height index, and smaller collagen fi-
brils with lower compressive stiffness. In short, decreased pro-
liferation compounded with compromised collagen biomechani-
cal integrity led to defects in the tissue’s ability to twist and with-
stand mechanical loads which subsequently increased the like-
lihood of degeneration and disc tears.110 Lubricin is another im-
portant glycoprotein critical in providing joint lubrication and 
in aiding the endurance to mechanical strain. Lubricin knock-
out (Prg4-/-) mice were reported to have thinner AF, increased 
articular surface friction, early progressive surface damage, and 
increased apparent torsional modulus at L1/L2 disc111; all of 
which highlight the functional importance of lubricin as a pro-
tective barrier in the joints.

PROTEOGLYCAN CORE PROTEIN 
DISORDERS-LINKED SKELETAL 
DYSPLASIAS

Since PGs are important in conferring mechanical, biochem-
ical, and physical properties to tissues, mutations in genes en-
coding core proteins can detrimentally affect skeletal tissue de-
velopment and integrity. Skeletal dysplasias noted in this review 
are linked to gene mutations in aggrecan (ACAN), biglycan 
(BGN) and perlecan (HSPG2)12 (Table 2).
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1. Aggrecanopathies in Skeletal Dysplasia
In humans, ACAN mutations result in autosomal-dominant 

spondyloepiphyseal dysplasia Kimberley type (SEDK) and auto-
somal-recessive spondylo-epi-metaphyseal dysplasia (SEMD).112,113 
Autosomal-dominant SEDK is a skeletal dysplasia characterized 
by a stocky short stature and early-onset progressive joint OA. 

Anderson et al. first reported about SEDK identified in a multi-
generational South African family of UK. white descent.114 Sub-
sequently, Eyre et al.115 and Gleghorn et al.116 performed linkage 
studies and identified a novel locus on chromosome 15q26.1 
where a single base-pair (bp) insertion introduced a frameshift 
of 212 amino acids that caused a premature stop codon in ACAN, 

Table 2. Skeletal dysplasias caused by proteoglycan dysfunction and mutation

Species Gene Disease model/ 
disorder Mutation Effect Phenotype References

Human ACAN Spondyloepiphyseal 
dysplasia,  
Kimberley type 
(SEDK)

Frameshift 
mutation; 
autosomal 
dominant

A single-base-pair insertion, within 
the variable repeat region of exon 
12, introduce a 212 amino acid 
frameshift followed by premature 
stop codon. Lack half of the CS1 
domain, the complete CS2 domain, 
and the G3 domain, resulting in 
abnormally short aggrecan protein

Short stature and early  
development of osteoarthritis, 
especially in the knees, 
ankles, and hips. Variation 
of mutation also results in 
short stature with  
accelerated bone maturation, 
early onset of osteoarthritis, 
and craniofacial, limb, and 
vertebral abnormalities

Anderson et al.,114 
1990; Eyre et al.,115 
2005; Gleghorn 
et al.,116 2005; 
Nilsson et al.,117 
2014; Kim et al.,118 
2022; Karatas  
et al.,119 2023; 
Huang et al.,120 
2023

Human ACAN Spondylo-
epimetaphy-seal 
dysplasia (SEMD)

Missense 
mutation; 
autosomal 
dominant 

Point mutation c.6799G > A 
p.Asp2267Asn amino acid  
substitution affected a highly  
conserved residue that contributes 
to the structure of the C-type lectin 
domain within the G3 domain of 
the protein, in part by coordinating 
binding of one of three calcium 
ions important for its structure

Heterogeneous group of 
disorders defined by the 
combination of vertebral, 
epiphyseal, and metaphyseal 
anomalies. Short stature, 
brachydactyly, distinct  
severe midface hypoplasia, 
short necks, barrel chests, 
lumbar lordosis, and 
macrocephaly

Tompson et al.,113 
2009; Fukuhara 
et al.,122 2019; 
Stattin et al.,121 
2022

Human BGN X-linked SEMD Spectrum of 
mutation: 
insertion/
deletion, 
missense, 
and  
nonsense

Mutation in BGN on chromosome 
Xq28. Point mutation c.439A > G 
(p.Lys147Glu) in Korean family; 
c.776G > T (p.Gly259Val) in the 
Italian family; and c.439A > G 
(p.Lys147Glu) mutation in the  
Indian patient

SEMDX were reported in 
three different ethnic 
background. Characterized 
by short stature with 
shortening of limbs,  
bowing of the legs, and 
lumbar lordosis

Camera et al.,123 
1994; Cho et al.,125 
2016; Meester  
et al.,124 2017

Human HSPG2 Dyssegmental  
dysplasia,  
Silver-Handmaker 
type (DDSH)

Frameshift 
mutation; 
lethal  
autosomal 
recessive

89-bp duplication of exon 34 of 
HSPG2; one unrelated case with 
89-bp duplication compound 
with point mutation that results 
in skipping of entire exons 52 and 
73. Homozygous 4-bp deletion in 
exon 31 causes frameshift mutation 
that results in truncation in the 
perlecan protein core

Diminished perlecan  
secretion. Dwarfism,  
anisospondyly and  
micromelia, small mouth, 
small chest, die shortly 
from respiratory  
insufficiency

Arikawa-Hirasawa 
et al.,126 2001; 
Rieubland et al.,128 
2010; Ladhani  
et al.,129 2013

Human HSPG2 Schwartz-Jampel 
syndrome (SJS)

Spectrum of 
mutations: 
insertion/
deletion, 
missense, 
and  
nonsense. 
Autosomal 
recessive

Spectrum of mutations affecting 
perlecan domain II, III, IV, V. For 
example: Point mutation c.2746C>T 
on exon 22 from one parent results 
in premature stop codon (p.R916X), 
reducing perlecan mRNA level by 
36.3%. Another case found 
c.1125C > G; p.Cys375Trp of 
HSPG2 affect perlecan domain II

Continuous contractions of 
muscles throughout the 
body including the face, 
abnormal spinal curvature 
and shortening of the bone. 
Narrow eye openings 
(blepharophimosis) and 
pursed lips

Bauché et al.,130 
2013; Lin et al.,131 
2021
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truncating aggrecan protein to lack half of the CS1 domain, the 
complete CS2 domain, and the G3 domain. Another autosomal-
dominant mutation type led to short stature with accelerated 
bone maturation, early onset of OA, and craniofacial, limb, and 
vertebral abnormalities.117-120

The autosomal-recessive SEMD was reported by Tompson et 
al.,113 describing 3 siblings with SEMD to have had extremely 
short stature, brachydactyly, distinct severe midface hypoplasia, 
short necks, barrel chests, lumbar lordosis, and macrocephaly. 
DNA sequence analysis of affected individuals revealed a mis-
sense mutation that predicted an amino acid substitution in the 
C-type lectin domain within the G3 domain,113 resulting in a 
reduction of aggrecan secretion.121 A recent case reported by 
Fukuhara et al.122 described an individual with SEMD caused 
by a heterozygous missense mutation in ACAN, however, the 
skeletal phenotype noted was much milder than the previous 
case, suggesting that mutations on different domains of ACAN 
can lead to different phenotypes.

2. BGN-Linked SEMD
Clinically, BGN mutation leads to X-linked SEMD123 and 

Meester-Loeys Syndrome, a connective tissue‐arterial aneu-
rysms disorder.124 Both disorders are characterized by skeletal 
dysplasia with short stature. To date, there are only 3 cases of X-
linked SEMD (SEMDX) observed in an Italian, Korean, and In-
dian family.125 This SEMDX disorder was caused by a missense 
mutation in BGN on chromosome Xq28 and phenotypically re-
sulted in the shortening of limbs, bowing of the legs, and lum-
bar lordosis.

3. HSPG2-Linked Skeletal Dysplasia
The generation of perlecan deficient and hypomorphic mice 

was key to identifying HSPG2 mutations in human autosomal-
recessive genetic diseases: DDSH and SJS.88,126,127 Clinically, 
DDSH is a rare autosomal-recessive skeletal dysplasia with an-
isospondyly and micromelia caused by perlecan truncation, re-
sulting in diminished perlecan secretion. The mutation in pa-
tients was created by 89-bp duplication of exon 34 of HSPG2 or 
a frameshift mutation that causes truncation in the perlecan 
protein core.92,126,128,129 SJS is also a rare autosomal-recessive dis-
order characterized by a spectrum of abnormal neuromuscular 
functions and skeletal dysplasia, such as continuous contrac-
tions of muscles throughout the body including the face, ab-
normal spinal curvature, and shortening of the bone.92,127,130,131 
Patients with SJS survive and exhibit milder phenotypes com-
pared to DDSH patients due to partially functional secreted 

perlecan.126 These phenotypes underscore the importance of 
perlecan in maintaining both cartilage integrity and muscle ex-
citability.

CONCLUDING REMARKS

PGs are essential for proper skeletal development. Within the 
ECM, large PGs interact with growth factors and osmolytes to 
confer water-binding properties, tissue hydration, and bioavail-
ability of growth factors, while smaller PGs regulate collagen fi-
bril formation in the ECM. At the cell membrane, PGs can pro-
vide stabilization for ligand-receptor interactions, and potenti-
ate signaling complexes that regulate growth factor sensitivity, 
cell migration, proliferation, and matrix adhesion. Studies have 
shown that gene mutations of major PGs such as aggrecan, per-
lecan, lubricin, biglycan, and tenomodulin result in disc degen-
eration and skeletal defects in murine models. These models 
described here could potentially be used to explore treatment 
modalities to restore ECM functionality during disc degenera-
tion. In humans, proteoglycan gene mutations result in severe 
skeletal dysplasia, including lumbar disc herniation in some 
cases. Currently, there are no treatments for genetic skeletal dis-
orders except corrective surgical procedures including osteoto-
my and spinal stenosis surgery.

Before we conclude, it is important to discuss a few emerging 
approaches to treat disc degeneration and restore the matrix 
function. During aging, senescent NP cells accumulate in the 
disc.132-134 Senescent cells are characterized by the senescence-
associated secretory phenotype factors, particularly their secre-
tion of proinflammatory ILs and several proteases including 
MMPs, ADAMTSs and serine protease HTRA1. To minimize 
age-associated disc degeneration, restore matrix function and 
to promote the reparative processes, senolytic drug cocktail of 
Dasatinib and Quercetin (D+Q) and pentosan polysulfate, a 
HS biomimetic, are under investigation as attractive options.135,136 
The senolytic (D+Q) cocktail works by selectively inducing se-
nescent cell apoptosis by targeting senescent cell antiapoptotic 
pathways.137,138 It should be noted that it is technically challeng-
ing to deliver biomimetics to inner disc compartments without 
causing structural alterations during delivery. In contrast, sys-
temic administration of Dasatinib and Quercetin was found to 
be effective in murine models and is a viable therapeutic option 
in preventing age-associated disc degeneration and restoring 
matrix quality. Similarly, long-term systemic administration of 
a supplement called alpha-ketoglutaric acid was reported to at-
tenuate inflammatory- and age-associated disc degeneration by 
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suppressing catabolic IL-6 expression and preventing JAK2/
STAT3 (Janus tyrosine kinase 2/signal transducer and activator 
of the transcription 3) phosphorylation involved in the degen-
erative process.139 In the context of injury-induced disc degen-
eration, Emodin, a bioactive anthraquinone compound, has 
been proposed as a potential therapeutic to alleviate inflamma-
tion when injected into the injury site.140,141 This bioactive works 
by upregulating low-density lipoprotein receptor-related pro-
tein 1 to inhibit NF-κB mediated degradation of MMPs and 
ADAMTS-5, ameliorating disc degeneration and preserving 
aggrecan expression and functionality in vitro and in vivo140 (See 
Fig. 2 for summary of these potential therapeutics). Further 
clinical trials and controlled studies will be required to assess 
the efficacy of these therapies.
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