2. National Academies of Sciences Engineering, and Medicine; Policy and Global Affairs; Government-University-Industry Research Roundtable. The Fourth Industrial Revolution: Proceedings of a Workshop-in Brief. Washington (DC): National Academies Press (US); 2017.
3. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism 2017 69S:S36-40.
4. Buchlak QD, Esmaili N, Leveque JC, et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev 2019 Aug 17 [Epub].
https://doi.org/10.1007/s10143-019-01163-8.
13. Hoeks LB, Greven WL, de Valk HW. Real-time continuous glucose monitoring system for treatment of diabetes: a systematic review. Diabet Med 2011 28:386-94.
14. Rumpler M, Mader JK, Fischer JP, et al. First application of a transcutaneous optical single-port glucose monitoring device in patients with type 1 diabetes mellitus. Biosens Bioelectron 2017 88:240-8.
15. Guo K, Lu Y, Gao H, et al. Artificial intelligence-based semantic Internet of Things in a user-centric smart city. Sensors (Basel) 2018 Apr 26 18(5):pii: E1341. doi:
10.3390/s18051341.
16. Hoy MB. The “Internet of Things”: What it is and what it means for libraries. Med Ref Serv Q 2015 34:353-8.
17. Badii C, Bellini P, Difino A, et al. Sii-Mobility: An IoT/IoE architecture to enhance smart city mobility and transportation services. Sensors (Basel) 2018 Dec 20 19(1):pii: E1. doi:
10.3390/s19010001.
18. Lo SK, Liew CS, Tey KS, et al. An interoperable componentbased architecture for data-driven IoT system. Sensors (Basel) 2019 Oct 9 19(20):pii: E4354. doi:
10.3390/s19204354.
20. Cerchecci M, Luti F, Mecocci A, et al. A low power iot sensor node architecture for waste management within smart cities context. Sensors (Basel) 2018 Apr 21 18(4):pii: E1282. doi:
10.3390/s18041282.
21. Psiha MM, Vlamos P. IoT Applications with 5G connectivity in medical tourism sector management: third-party service scenarios. Adv Exp Med Biol 2017 989:141-54.
22. Shin M, Paik W, Kim B, et al. An IoT platform with monitoring robot applying CNN-based context-aware learning. Sensors (Basel) 2019 Jun 2 19(11):pii: E2525. doi:
10.3390/s19112525.
26. Coravos A, Khozin S, Mandl KD. Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digit Med 2019 2(1):pii: 14. doi:
10.1038/s41746-019-0090-4
. Epub 2019 Mar 11.
29. Qureshi F, Krishnan S. Wearable hardware design for the Internet of Medical Things (IoMT). Sensors (Basel) 2018 Nov 7 18(11):pii: E3812. doi:
10.3390/s18113812.
31. Mora H, Gil D, Terol RM, et al. An IoT-based computational framework for healthcare monitoring in mobile environments. Sensors (Basel) 2017 Oct 10 17(10):pii: E2302. doi:
10.3390/s17102302.
32. Prince J, Arora S, de Vos M. Big data in Parkinson’s disease: using smartphones to remotely detect longitudinal disease phenotypes. Physiol Meas 2018 39:044005.
36. Stienen MN, Smoll NR, Joswig H, et al. Influence of the mental health status on a new measure of objective functional impairment in lumbar degenerative disc disease. Spine J 2017 17:807-13.
40. Stienen MN, Ho AL, Staartjes VE, et al. Objective measures of functional impairment for degenerative diseases of the lumbar spine: a systematic review of the literature. Spine J 2019 19:1276-93.
42. Ishac K, Suzuki K. LifeChair: a conductive fabric sensorbased smart cushion for actively shaping sitting posture. Sensors (Basel) 2018 Jul 13 18(7):pii: E2261. doi:
10.3390/s18072261.
43. Dang QK, Seo HG, Pham DD, et al. Wearable sensor based stooped posture estimation in simulated Parkinson’s disease gaits. Sensors (Basel) 2019 Jan 9 19(2):pii: E223. doi:
10.3390/s19020223.
52. Koydemir HC, Ozcan A. Wearable and implantable sensors for biomedical applications. Annu Rev Anal Chem (Palo Alto Calif) 2018 11:127-46.
54. Ruotsalainen P, Blobel B. Digital pHealth - problems and solutions for ethics, trust and privacy. Stud Health Technol Inform 2019 261:31-46.