2. Jin M, Schröder M, Staartjes VE. Artificial intelligence and machine learning in spine surgery. In: Veeravagu A, Wang MYet al., editors. Robotic and navigated spine surgery. New Delhi (India): Elsevier; 2023. p. 213-29.
3. Hirschmann A, Cyriac J, Stieltjes B, et al. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol 2019;23:304-11.
4. Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics 2017;37:2113-31.
5. Wolterink JM, Mukhopadhyay A, Leiner T, et al. Generative adversarial networks: a primer for radiologists. Radiographics 2021;41:840-57.
6. Morbée L, Chen M, Herregods N, et al. MRI-based synthetic CT of the lumbar spine: geometric measurements for surgery planning in comparison with CT. Eur J Radiol 2021;144:109999.
7. Lim DSW, Makmur A, Zhu L, et al. Improved productivity using deep learning–assisted reporting for lumbar spine MRI. Radiology 2022;305:160-6.
8. Subramanian T, Shahi P, Araghi K, et al. Using artificial intelligence to answer common patient-focused questions in minimally invasive spine surgery. JBJS 2023;105:1649-53.
9. Chaudhari AS, Fang Z, Kogan F, et al. Super‐resolution musculoskeletal MRI using deep learning. Magn Reson Med 2018;80:2139-54.
13. Almansour H, Herrmann J, Gassenmaier S, et al. Deep learning reconstruction for accelerated spine MRI: prospective analysis of interchangeability. Radiology 2023;306:e212922.
28. Diniz JOB, Ferreira JL, Diniz PHB, et al. A deep learning method with residual blocks for automatic spinal cord segmentation in planning CT. Biomed Signal Process Control 2022;71(Pt A):103074.
31. Al-Kafri AS, Sudirman S, Hussain A, et al. Boundary delineation of MRI images for lumbar spinal stenosis detection through semantic segmentation using deep neural networks. IEEE Access 2019;7:43487-501.
32. Hallinan JTPD, Zhu L, Yang K, et al. Deep learning model for automated detection and classification of central canal, lateral recess, and neural foraminal stenosis at lumbar spine MRI. Radiology 2021;300:130-8.
35. Georgiev R, Novakova M, Bliznakova K. Clinical assessment of CoLumbo deep learning system for central canal stenosis diagnostics. EJMO 2023;7:42-8.
37. Li KY, Weng JJ, Li HL, et al. Development of a deep learning model for diagnosing lumbar spinal stenosis based on CT images. Spine (Phila Pa 1976) 2023 Dec 19 doi:
10.1097/BRS.0000000000004903. [Epub].
40. Kim T, Kim YG, Park S, et al. Diagnostic triage in patients with central lumbar spinal stenosis using a deep learning system of radiographs. J Neurosurg Spine 2022;37:104-11.
43. Kim KC, Cho HC, Jang TJ, et al. Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation. Comput Methods Programs Biomed 2021;200:105833.
47. Lin HM, Colak E, Richards T, et al. The RSNA Cervical Spine Fracture CT Dataset. Radiol Artif Intell 2023;5:e230034.
52. Bressem KK, Adams LC, Proft F, et al. Deep learning detects changes indicative of axial spondyloarthritis at MRI of sacroiliac joints. Radiology 2022;305:655-65.
54. Gilberg L, Teodorescu B, Maerkisch L, et al. Deep learning enhances radiologists’ detection of potential spinal malignancies in CT scans. Appl Sci 2023;13:8140.
59. Hwang EJ, Kim S, Jung JY. Bone marrow radiomics of T1-weighted lumber spinal MRI to identify diffuse hematologic marrow diseases: comparison with human readings. IEEE Access 2020;8:133321-9.
61. Staartjes VE, Seevinck PR, Vandertop WP, et al. Magnetic resonance imaging–based synthetic computed tomography of the lumbar spine for surgical planning: a clinical proof-of-concept. Neurosurg Focus 2021;50:E13.
62. van der Kolk BBY, Slotman DJJ, Nijholt IM, et al. Bone visualization of the cervical spine with deep learning-based synthetic CT compared to conventional CT: a single-center noninferiority study on image quality. Eur J Radiol 2022;154:110414.
65. Roberts M, Hinton G, Wells AJ, et al. Imaging evaluation of a proposed 3D generative model for MRI to CT translation in the lumbar spine. Spine J 2023;23:1602-12.
66. Ghaednia H, Fourman MS, Lans A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J 2021;21:1617-25.
67. Yamout T, Orosz LD, Good CR, et al. Technological advances in spine surgery: navigation, robotics, and augmented reality. Orthop Clin 2023;54:237-46.
70. Burström G, Buerger C, Hoppenbrouwers J, et al. Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine 2019;31:147-54.
72. Yang HS, Kim KR, Kim S, et al. Deep learning application in spinal implant identification. Spine (Phila Pa 1976) 2021;46:E318-24.
73. Huang KT, Silva MA, See AP, et al. A computer vision approach to identifying the manufacturer and model of anterior cervical spinal hardware. J Neurosurg Spine 2019;31:844-50.
74. Scherer M, Kausch L, Ishak B, et al. Development and validation of an automated planning tool for navigated lumbosacral pedicle screws using a convolutional neural network. Spine J 2022;22:1666-76.
76. Boutin RD, Lenchik L. Value-added opportunistic CT: insights into osteoporosis and sarcopenia. AJR Am J Roentgenol 2020;215:582-94.
86. Moskven E, Bourassa-Moreau E, Charest-Morin R, et al. The impact of frailty and sarcopenia on postoperative outcomes in adult spine surgery. A systematic review of the literature. Spine J 2018;18:2354-69.
87. Pickhardt PJ, Perez AA, Garrett JW, et al. Fully automated deep learning tool for sarcopenia assessment on CT: L1 versus L3 vertebral level muscle measurements for opportunistic prediction of adverse clinical outcomes. AJR Am J Roentgenol 2022;218:124-31.
90. Azimi P, Mohammadi HR, Benzel EC, et al. Use of artificial neural networks to predict recurrent lumbar disk herniation. Clin Spine Surg 2015;28:E161-5.
92. Ames CP, Smith JS, Pellisé F, et al. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine (Phila Pa 1976) 2019;44:915-26.
93. Tee JW, Rivers CS, Fallah N, et al. Decision tree analysis to better control treatment effects in spinal cord injury clinical research. J Neurosurg Spine 2019;31:464-72.
96. Wilson B, Gaonkar B, Yoo B, et al. Predicting spinal surgery candidacy from imaging data using machine learning. Neurosurgery 2021;89:116-21.
97. Broida SE, Schrum ML, Yoon E, et al. Improving surgical triage in spine clinic: predicting likelihood of surgery using machine learning. World Neurosurg 2022;163:e192-8.
98. Khan O, Badhiwala JH, Witiw CD, et al. Machine learning algorithms for prediction of health-related quality-of-life after surgery for mild degenerative cervical myelopathy. Spine J 2021;21:1659-69.
100. Russo GS, Canseco JA, Chang M, et al. A novel scoring system to predict length of stay after anterior cervical discectomy and fusion. J Am Acad Orthop Surg 2021;29:758-66.
101. Valliani AA, Feng R, Martini ML, et al. Pragmatic prediction of excessive length of stay after cervical spine surgery with machine learning and validation on a national scale. Neurosurgery 2022;91:322-30.
105. Mohanty S, Hassan FM, Lenke LG, et al. Machine learning clustering of adult spinal deformity patients identifies four prognostic phenotypes: a multicenter prospective cohort analysis with single surgeon external validation. Spine J 2024;24:1095-108.
106. Scheer JK, Osorio JA, Smith JS, et al. Development of validated computer-based preoperative predictive model for proximal junction failure (PJF) or clinically significant PJK with 86% accuracy based on 510 ASD patients with 2-year follow-up. Spine (Phila Pa 1976) 2016;41:E1328-35.
111. Hopkins BS, Yamaguchi JT, Garcia R, et al. Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients. J Neurosurg Spine 2019;32:399-406.
112. Fatima N, Zheng H, Massaad E, et al. Development and validation of machine learning algorithms for predicting adverse events after surgery for lumbar degenerative spondylolisthesis. World Neurosurgery 2020;140:627-41.
114. Lee JW, Chun KS, Lee S, et al. Hardware failure detection in spine radiography using AI. In: Paper presented at Radiological Society of North America; 2023 Nov 29; Chicago, USA.
116. Bhattacharjee A, Moraffah R, Garland J, et al. LLMs as counterfactual explanation modules: can ChatGPT explain blackbox text classifiers? arXiv:2309.13340v2 [Preprint]. 2024 [2024 Jan 11]. Available from:
https://doi.org/10.48550/arXiv.2309.13340.
119. Tao R, Liu W, Zheng G. Spine-transformers: vertebra labeling and segmentation in arbitrary field-of-view spine CTs via 3D transformers. Med Image Anal 2022;75:102258.
120. Jakubicek R, Chmelik J, Jan J. Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines. Comput Methods Programs Biomed 2020;183:105081.
122. Haim O, Agur A, Gabay S, et al. Differentiating spinal pathologies by deep learning approach. Spine J 2024;24:297-303.
123. Kalagara S, Eltorai AE, Durand WM, et al. Machine learning modeling for predicting hospital readmission following lumbar laminectomy. J Neurosurg Spine 2018;30:344-52.
124. Goyal A, Ngufor C, Kerezoudis P, et al. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg Spine 2019;31:568-78.
125. Karhade AV, Bongers ME, Groot OQ, et al. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery. Spine J 2021;21:1635-42.
127. Goedmakers CM, Lak AM, Duey AH, et al. Deep learning for adjacent segment disease at preoperative MRI for cervical radiculopathy. Radiology 2021;301:664-71.
129. Hu X, Zhu Y, Qian Y, et al. Prediction of subsequent osteoporotic vertebral compression fracture on CT radiography via deep learning. View 2022;3:20220012.
131. van der Graaf JW, van Hooff ML, Buckens CFM, et al. Lumbar spine segmentation in MR images: a dataset and a public benchmark. Sci Data 2024;11:264.
132. Sudirman S, Al Kafri A, Natalia F, et al. Lumbar spine MRI dataset. Mendeley Data 2019;2:2019.
133. Deng Y, Wang C, Hui Y, et al. Ctspine1k: a large-scale dataset for spinal vertebrae segmentation in computed tomography. arXiv:2105.14711v3 [Preprint]. 2021 [cited 2014 Jan 11]. Available from:
https://doi.org/10.48550/arXiv.2105.14711.
134. Sekuboyina A, Husseini ME, Bayat A, et al. VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Med Image Anal 2021;73:102166.
135. Klinwichit P, Yookwan W, Limchareon S, et al. BUU-LSPINE: a thai open lumbar spine dataset for spondylolisthesis detection. Appl Sci 2023;13:8646.
136. Nguyen HT, Pham HH, Nguyen HT, et al. VinDr-SpineXR: a large annotated medical image dataset for spinal lesions detection and classification from radiographs. arXiv:2106.12930v1 [Preprint]. 2021 [cited 2014 Jan 11]. Available from:
https://doi.org/10.48550/arXiv.2106.12930.