7. Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 2020;21.
11. Singh M, Roginskaya M, Dalal S, et al. Extracellular ubiquitin inhibits beta-AR-stimulated apoptosis in cardiac myocytes: role of GSK-3beta and mitochondrial pathways. Cardiovasc Res 2010;86:20-8.
13. Sjodin S, Hansson O, Ohrfelt A, et al. Mass spectrometric analysis of cerebrospinal fluid ubiquitin in Alzheimer’s disease and parkinsonian disorders. Proteomics Clin Appl 2017;11:1700100.
14. Majetschak M, King DR, Krehmeier U, et al. Ubiquitin immunoreactivity in cerebrospinal fluid after traumatic brain injury: clinical and experimental findings. Crit Care Med 2005;33:1589-94.
15. Ji Y, Yao J, Zhao Y, et al. Extracellular ubiquitin levels are increased in coronary heart disease and associated with the severity of the disease. Scand J Clin Lab Invest 2020;80:256-64.
16. Majetschak M, Cohn SM, Obertacke U, et al. Therapeutic potential of exogenous ubiquitin during resuscitation from severe trauma. J Trauma 2004;56:991-9. discussion 9-1000.
17. Earle SA, Proctor KG, Patel MB, et al. Ubiquitin reduces fluid shifts after traumatic brain injury. Surgery 2005;138:431-8.
19. Sudzhashvili R, Bakuradze ED, Modebadze IR, et al. Ubiquitin in combination with alcohol stimulates proliferative activity of hepatocytes. Georgian Med News 2013;86-90.
22. Griebenow M, Casalis P, Woiciechowsky C, et al. Ubiquitin reduces contusion volume after controlled cortical impact injury in rats. J Neurotrauma 2007;24:1529-35.
23. Ji Y, Yao J, He Y. Extracellular ubiquitin protects cardiomyocytes during ischemia/hypoxia by inhibiting mitochondrial apoptosis pathway through CXCR4. Biomed Pharmacother 2020;131:110787.
26. Sudzhashvili R, Bakuradze ED, Modebadze IR, et al. In vivo investigation of extracellular ubiquitin effect on liver histoarchitectonics. Georgian Med News 2011;77-81.
28. Zimmermann R, Vieira Alves Y, Sperling LE, et al. Nanotechnology for the treatment of spinal cord injury. Tissue Eng Part B Rev 2021;27:353-65.
31. Yin S, Xia F, Zou W, et al. Ginsenoside Rg1 regulates astrocytes to promote angiogenesis in spinal cord injury via the JAK2/STAT3 signaling pathway. J Ethnopharmacol 2024;334:118531.
32. Xiao CL, Yin WC, Zhong YC, et al. The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022;156:113881.
33. He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities. Cell Prolif 2022;55:e13275.
34. Fang B, Li XQ, Bao NR, et al. Role of autophagy in the bimodal stage after spinal cord ischemia reperfusion injury in rats. Neuroscience 2016;328:107-16.
36. Theodore N, Martirosyan N, Hersh AM, et al. Cerebrospinal fluid drainage in patients with acute spinal cord injury: a multi-center randomized controlled trial. World Neurosurg 2023 Jun 24 S1878-8750(23)00846-X. doi: 10.1016/j.wneu.2023.06.078. [Epub].
40. Goelz L, Casalis PA, Thomale UW, et al. The effect of ubiquitin on immune response after controlled cortical impact injury. J Trauma 2011;70:1104-11.
43. Lu E, Tang Y, Chen J, et al. Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury. Exp Neurol 2023;368:114495.
46. Xie W, Jin S, Wu Y, et al. Auto-ubiquitination of NEDD4-1 recruits USP13 to facilitate autophagy through deubiquitinating VPS34. Cell Rep 2020;30:2807-19.e4.
58. Daniels CR, Foster CR, Yakoob S, et al. Exogenous ubiquitin modulates chronic beta-adrenergic receptor-stimulated myocardial remodeling: role in Akt activity and matrix metalloproteinase expression. Am J Physiol Heart Circ Physiol 2012;303:H1459-68.