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Objective: Readmission rates after posterior cervical fusion (PCF) significantly impact pa-
tients and healthcare, with complication rates at 15%–25% and up to 12% 90-day readmis-
sion rates. In this study, we aim to test whether machine learning (ML) models that capture 
interfactorial interactions outperform traditional logistic regression (LR) in identifying re-
admission-associated factors.
Methods: The Optum Clinformatics Data Mart database was used to identify patients who 
underwent PCF between 2004–2017. To determine factors associated with 30-day readmis-
sions, 5 ML models were generated and evaluated, including a multivariate LR (MLR) mod-
el. Then, the best-performing model, Gradient Boosting Machine (GBM), was compared 
to the LACE (Length patient stay in the hospital, Acuity of admission of patient in the hos-
pital, Comorbidity, and Emergency visit) index regarding potential cost savings from algo-
rithm implementation.
Results: This study included 4,130 patients, 874 of which were readmitted within 30 days. 
When analyzed and scaled, we found that patient discharge status, comorbidities, and num-
ber of procedure codes were factors that influenced MLR, while patient discharge status, 
billed admission charge, and length of stay influenced the GBM model. The GBM model 
significantly outperformed MLR in predicting unplanned readmissions (mean area under 
the receiver operating characteristic curve, 0.846 vs. 0.829; p < 0.001), while also project-
ing an average cost savings of 50% more than the LACE index.
Conclusion: Five models (GBM, XGBoost [extreme gradient boosting], RF [random forest], 
LASSO [least absolute shrinkage and selection operator], and MLR) were evaluated, among 
which, the GBM model exhibited superior predictive performance, robustness, and accu-
racy. Factors associated with readmissions impact LR and GBM models differently, suggest-
ing that these models can be used complementarily. When analyzing PCF procedures, the 
GBM model resulted in greater predictive performance and was associated with higher the-
oretical cost savings for readmissions associated with PCF complications.
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INTRODUCTION

Posterior cervical fusion (PCF) is a common surgical inter-
vention used to treat a variety of cervical spinal pathologies, 
including spondylosis, spinal tumors, and spinal deformity.1 
However, postoperative complications following PCF are not 
uncommon; in fact, one literature review reported that patients 
undergoing PCF have an overall complication rate of 15%–25%.2 
Furthermore, analysis of a spine-specific database for cervical 
fusion surgeries showed that patients who underwent the pos-
terior approach had unplanned 90-day readmission rates of up 
to 12%.3 Such unplanned readmissions contribute to an esti-
mated hospital cost of $10 billion nationally.4 These costs are 
increasingly relevant as the rate of cervical fusion surgeries is 
expected to increase by 13.3% for anterior cervical fusions and 
19.3% for PCF.5

Given these considerations, there is an ongoing effort to gen-
erate predictive models that can successfully identify patients at 
high risk of readmission following spine surgery.6-10 By identify-
ing high-risk patients, model simulations could offer potential 
interventions that may reduce readmissions and associated 
healthcare costs. In particular, machine learning (ML) models 
have shown promise in identifying intervention strategies that 
can inform how healthcare and hospital systems allocate re-
sources to reduce postoperative readmission rates.11 These mod-
els leverage patient demographic information and perioperative 
data to determine relevant factors that predict patient’s risk of 
being readmitted following surgery. Here, we build on this lit-
erature by using ML correlators, including logistic regression 
(LR) models, to identify risk factors associated with readmis-
sions following PCF. We hypothesized that, in keeping with pre-
viously published work, ML models such as least absolute shrink-
age and selection operator (LASSO), random forest (RF), sto-
chastic gradient boosting machine (GBM), or extreme gradient 
boosting (XGBoost) can out predict and outperform traditional 
LR models, while also contributing to greater readmission-as-
sociated cost savings when implemented.12

To test this 2-fold hypothesis, we (1) compared the predictive 
performance of 4 supervised ML algorithms to a traditionally-
implemented ML model, multivariate LR (MLR) and (2) esti-
mated the potential cost savings of reducing readmissions by 
implementing the best-performing ML model in a clinical set-
ting and comparing it to the LACE (Length patient stay in the 
hospital, Acuity of admission of patient in the hospital, Comor-
bidity, and Emergency visit) index. While this study presents an 
initial effort to use supervised classification and regression ML 

models to predict unplanned readmissions rates and simulate 
readmission-associated costs savings, there are inherent limita-
tions or biases of ML models that are unaccounted for and merit 
recognition. In addition, further clinical evaluation is needed to 
refine, finetune, and enhance the performance of the models 
presented in this study.

MATERIALS AND METHODS

1. Cohort
To analyze specific patient utilization, expenditure, and en-

rollment data between 1/1/2004 and 11/30/2017, the Optum 
Clinformatics Data Mart database (Optum, Inc., Eden Prairie, 
MN, USA) was used. Patients were identified using the Current 
Procedural Terminology code 22600 for posterior cervical de-
compression with fusion and 22840, 22842, 22843, or 22844 for 
posterior spinal instrumentation. Patients were subsequently 
filtered using our eligibility criteria (Fig. 1). To maintain the 

Fig. 1. Identifying and selecting criteria for eligible patients 
who underwent posterior cervical fusion and instrumenta-
tion. “Complete cases” refers to patients with no missing val-
ues for model predictors.

Exclude:

5,028 Stimulators, 
pumps, cranial, 

intraspinal, prior fusion, 
prior shunt, trauma

0 Expired during 
initial admission

1,476 < 7 Months 
continuous enrollment

14,979 Posterior 
cervical fusion & 
instrumentation

7,345 Remaining patients

4,130 Complete cases
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specificity of our study population to PCF and instrumentation, 
we ensured the exclusion of patients who had undergone ante-
rior or lumbar procedures, as these represent distinct surgical 
categories with different risk profiles and outcomes. Since this 
database contains deidentified medical claims, patient consent 
is not applicable, and the study is exempted from requiring In-
stitutional Review Board approval.

2. Predictors
The predictors used were based on previous studies and in-

cluded patient demographics, socioeconomic status, procedural 
service, healthcare utilization, complications and comorbidi-
ties13,14 (Table 1). These predictors were selected before analyz-
ing the eligible patient data, and the algorithm implemented to 
analyze these predictors was in agreement with current medical 
literature.10-15

3. Outcomes
The primary outcome assessed was the relative influence of 

each predictor on the risk for unplanned readmissions, which 
was normalized using the variable importance score for each 
model. For secondary outcomes, we measured the performance 
of each ML model in predicting 30-day readmissions by com-
puting the area under the receiver operating characteristic curve 
(AUC), which serves as a measure of the model’s ability to esti-
mate the probability of readmission as previously described in 
Bamber.16 To calculate the potential cost savings associated with 
implementing these models, we applied the readmission reduc-
tion rates projected by the GBM model to the inflation-adjust-
ed, all-payer national estimates of surgical readmissions within 
30 days of surgery, as reported in a previously published Health-
care Cost and Utilization Project Statistical Brief.17 The brief 
provides a comprehensive analysis of 30-day post-surgical re-
admissions and associated costs across a spectrum of high-vol-
ume surgeries, including spinal procedures, in various income 
demographics. The predictive performance and associated cost 
savings were compared between the top-performing GBM model 
and the LACE index, a previously-validated readmission model.18

Table 1. Univariate logistic regression

Variable Not readmitted Readmitted Coefficient (SE) Pseudo R2 p-value

Demographics

Age (yr)   60.6 ± 10.9*   69.1 ± 10.6* 0.077 (0.004) 0.098 < 0.001

Female sex 1,475 (45.3) 397 (45.4) 0.005 (0.077) < 0.001 0.949

Medicare 1,411 (43.3) 709 (81.1) 1.726 (0.093) 0.099 < 0.001

Geographic division 0.011 < 0.001

South Atlantic 895 (27.5) 209 (23.9)

East North Central 550 (16.9) 174 (19.9) 0.304 (0.116)

West South Central 398 (12.2) 97 (11.1) 0.043 (0.137)

Mountain 325 (10.0) 76 (8.7) 0.001 (0.149)

West North Central 359 (11.0) 66 (7.6) -0.239 (0.154)

Pacific 283 (8.7) 93 (10.6) 0.342 (0.142)

Middle Atlantic 176 (5.4) 75 (8.6) 0.602 (0.158)

New England 132 (4.1) 60 (6.9) 0.666 (0.174)

East South Central 138 (4.2) 24 (2.7) -0.295 (0.234)

Insurance 0.083 < 0.001

POS 1,237 (38.0) 105 (12.0)

HMO 760 (23.3) 271 (31.0) 1.435 (0.124)

Other 753 (23.1) 401 (45.9) 1.836 (0.119)

PPO 227 (7.0) 75 (8.6) 1.359 (0.168)

EPO 219 (6.7) 17 (1.9) -0.089 (0.272)

Indemnity 60 (1.8) 5 (0.6) -0.018 (0.476)

(Continued)
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Variable Not readmitted Readmitted Coefficient (SE) Pseudo R2 p-value

Comorbidities

Alcohol 41 (1.3) 12 (1.4) 0.088 (0.330) < 0.001 0.792

Anemia 111 (3.4) 38 (4.3) 0.253 (0.192) < 0.001 0.196

Arrhythmia 225 (6.9) 80 (9.2) 0.306 (0.136) 0.001 0.028

CHF 67 (2.1) 38 (4.3) 0.772 (0.207) 0.003 < 0.001

Coagulopathy 24 (0.7) 15 (1.7) 0.855 (0.331) 0.001 0.014

Depression 454 (13.9) 104 (11.9) -0.182 (0.116) 0.001 0.112

DM 525 (16.1) 178 (20.4) 0.286 (0.097) 0.002 0.004

DMcx 97 (3.0) 56 (6.4) 0.802 (0.172) 0.005 < 0.001

Drugs 26 (0.8) 15 (1.7) 0.774 (0.327) 0.001 0.023

Fluid/electrolyte disorder 163 (5.0) 80 (9.2) 0.648 (0.142) 0.005 < 0.001

HTN 1,619 (49.7) 477 (54.6) 0.195 (0.076) 0.002 0.011

HTNcx 62 (1.9) 39 (4.5) 0.878 (0.208) 0.004 < 0.001

Hypothyroid 323 (9.9) 73 (8.4) -0.189 (0.136) 0.001 0.156

Liver 34 (1.0) 10 (1.1) 0.092 (0.362) < 0.001 0.800

Lymphoma 11 (0.3) 1 (0.1) -1.085 (1.045) < 0.001 0.228

Metastatic disease 11 (0.3) 8 (0.9) 1.003 (0.466) 0.001 0.040

Neurologic (other) 82 (2.5) 50 (5.7) 0.854 (0.184) 0.005 < 0.001

Obesity 326 (10.0) 104 (11.9) 0.194 (0.120) 0.001 0.110

Paralysis 60 (1.8) 47 (5.4) 1.108 (0.199) 0.007 < 0.001

PHTN 7 (0.2) 10 (1.1) 1.681 (0.494) 0.003 0.001

Psychoses 40 (1.2) 14 (1.6) 0.269 (0.313) < 0.001 0.400

Pulmonary 572 (17.6) 151 (17.3) -0.020 (0.101) < 0.001 0.841

PVD 65 (2.0) 34 (3.9) 0.687 (0.215) 0.002 0.002

Renal 106 (3.3) 71 (8.1) 0.966 (0.158) 0.008 < 0.001

Rheumatic 175 (5.4) 39 (4.5) -0.196 (0.181) < 0.001 0.272

Tobacco 775 (23.8) 160 (18.3) -0.332 (0.097) 0.003 < 0.001

Tumor 114 (3.5) 26 (3.0) -0.168 (0.221) < 0.001 0.438

Valvular 66 (2.0) 24 (2.7) 0.311 (0.242) < 0.001 0.209

Weight loss 8 (0.2) 8 (0.9) 1.322 (0.502) 0.002 0.011

Medical characteristics

Transferred to SNF 54 (1.7) 555 (63.5) 4.636 (0.154) 0.412 < 0.001

Diagnoses (n) 9.9 ± 4.7 11 ± 5.7 0.045 (0.007) 0.009 < 0.001

Length of stay (nights) 4.1 ± 4.8 6.5 ± 5.5 0.084 (0.008) 0.031 < 0.001

Prior admissions (n) 0.4 ± 0.7 0.8 ± 1.1 0.520 (0.045) 0.033 < 0.001

Prior ED visits (n) 0.5 ± 1.8 0.9 ± 1.8 0.098 (0.018) 0.007 < 0.001

Prior major operations (n) 0.3 ± 0.6 0.3 ± 0.6 0.066 (0.064) < 0.001 0.307

Prior outpatient visits (n) 17.3 ± 11.4 21.2 ± 14.9 0.022 (0.003) 0.014 < 0.001

Primary diagnosis 0.012 < 0.001

Stenosis 1,135 (34.9) 341 (39.0)

Spondylolisthesis 997 (30.6) 305 (34.9) 0.018 (0.090)

Table 1. Univariate logistic regression (Continued)

(Continued)
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Variable Not readmitted Readmitted Coefficient (SE) Pseudo R2 p-value

DDD 588 (18.1) 118 (13.5) -0.404 (0.118)

Displacement 206 (6.3) 63 (7.2) 0.018 (0.157)

Spondylosis 130 (4.0) 9 (1.0) -1.468 (0.350)

Other 88 (2.7) 9 (1.0) -1.078 (0.355)

Radiculopathy 50 (1.5) 15 (1.7) -0.002 (0.301)

Pain 33 (1.0) 8 (0.9) -0.215 (0.399)

Deformity 23 (0.7) 5 (0.6) -0.324 (0.497)

Postlaminectomy syndrome 4 (0.1) 1 (0.1) -0.184 (1.120)

Spondylolysis 2 (0.1) 0 (0) -11.364 (229.629)

Socioeconomic characteristics

Education 0.002 0.018

< 12th grade 16 (0.5) 3 (0.3)

High school diploma 1,028 (31.6) 323 (37.0) 0.074 (0.430)

Some college 1,803 (55.4) 456 (52.2) -0.317 (0.323)

Bachelor’s degree 409 (12.6) 92 (10.5) 0.186 (0.153)

Household size 0.063 < 0.001

1 1,637 (50.3) 698 (79.9)

2 870 (26.7) 107 (12.2) -1.128 (0.328)

3 290 (8.9) 26 (3.0) 0.621 (0.313)

4 269 (8.3) 23 (2.6) -0.698 (0.259)

5 128 (3.9) 16 (1.8) -0.153 (0.220)

6+ 62 (1.9) 4 (0.5) -0.154 (0.211)

Household income (USD) 0.022 < 0.001

< 40,000 781 (24.0) 341 (39.0)

40,000–49,999 260 (8.0) 57 (6.5) -0.591 (0.092)

50,000–59,999 255 (7.8) 84 (9.6) 0.05 (0.095)

60,000–74,999 422 (13.0) 99 (11.3) -0.229 (0.112)

75,000–99,999 571 (17.5) 123 (14.1) 0.278 (0.120)

> 100,000 967 (29.7) 170 (19.5) -0.266 (0.120)

Race 0.005 0.001

White 2,579 (79.2) 628 (71.9)

Black 406 (12.5) 148 (16.9) 0.404 (0.106)

Hispanic 225 (6.9) 79 (9.0) 0.366 (0.138)

Asian 46 (1.4) 19 (2.2) 0.528 (0.276)

Surgical characteristics

Microscope 202 (6.2) 28 (3.2) -0.692 (0.205) 0.003 < 0.001

Navigation 210 (6.4) 59 (6.8) 0.049 (0.153) < 0.001 0.750

rhBMP 251 (7.7) 52 (5.9) -0.278 (0.157) 0.001 0.070

Allograft 1,034 (31.8) 263 (30.1) -0.078 (0.083) < 0.001 0.350

Assistant surgeon 1,247 (38.3) 152 (17.4) -1.081 (0.096) 0.034 < 0.001

Increased procedural service 27 (0.8) 9 (1.0) 0.219 (0.387) < 0.001 0.579

Table 1. Univariate logistic regression (Continued)

(Continued)
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Variable Not readmitted Readmitted Coefficient (SE) Pseudo R2 p-value

Levels 0.011 < 0.001
2 452 (13.9) 67 (7.7)
3–6 2,493 (76.6) 670 (76.7) 1.384 (0.370)
7–12 304 (9.3) 130 (14.9) 0.127 (0.281)
13+ 7 (0.2) 7 (0.8) 0.115 (0.145)

Multiple procedures 409 (12.6) 194 (22.2) 0.686 (0.097) 0.011 < 0.001
Charge (USD) 121,618.6 ± 129,387.3 173,765.3 ± 248,002.8 0 (0) 0.015 < 0.001
Complications (n) 0.3 ± 0.8 0.4 ± 0.8 0.041 (0.047) < 0.001 0.396
CPT codes (n) 11.6 ± 4.0 12.2 ± 4.0 0.040 (0.009) 0.004 < 0.001
Return to OR 101 (3.1) 39 (4.5) 0.378 (0.193) 0.001 0.056
Year of surgery 0.023 < 0.001

2004 50 (1.5) 4 (0.5)
2005 64 (2.0) 8 (0.9) 1.958 (0.304)
2006 119 (3.7) 8 (0.9) -0.311 (0.291)
2007 124 (3.8) 13 (1.5) -0.321 (0.287)
2008 191 (5.9) 32 (3.7) 0.134 (0.280)
2009 247 (7.6) 40 (4.6) 0.042 (0.259)
2010 255 (7.8) 55 (6.3) -0.054 (0.244)
2011 272 (8.4) 63 (7.2) 0.395 (0.239)
2012 264 (8.1) 68 (7.8) -0.312 (0.231)
2013 320 (9.8) 104 (11.9) 0.193 (0.226)
2014 271 (8.3) 102 (11.7) -0.175 (0.214)
2015 273 (8.4) 95 (10.9) -0.017 (0.188)
2016 395 (12.1) 130 (14.9) 0.115 (0.166)
2017 411 (12.6) 152 (17.4) -0.077 (0.151)

Complications
Acute renal failure 20 (0.6) 15 (1.7) 1.039 (0.344) 0.002 0.004
Orthopedic implant 299 (9.2) 36 (4.1) -0.856 (0.181) 0.006 < 0.001
Cardiovascular 24 (0.7) 4 (0.5) -0.479 (0.541) < 0.001 0.349
Dural tear 23 (0.7) 10 (1.1) 0.487 (0.381) < 0.001 0.217
Neurologic 21 (0.6) 6 (0.7) 0.063 (0.465) < 0.001 0.893
Pulmonary 92 (2.8) 41 (4.7) 0.526 (0.192) 0.002 0.008
Wound (other) 6 (0.2) 3 (0.3) 0.624 (0.708) < 0.001 0.398
Pneumonia 11 (0.3) 5 (0.6) 0.529 (0.541) < 0.001 0.346
Sepsis or septicemia 0 (0) 3 (0.3) 13.885 (187.491) 0.002 0.002
Thrombotic 9 (0.3) 3 (0.3) 0.217 (0.668) < 0.001 0.750
Urinary tract infection 32 (1.0) 26 (3.0) 1.128 (0.267) 0.004 < 0.001
Wound hematoma/hemorrhage 14 (0.4) 12 (1.4) 1.171 (0.395) 0.002 0.004
Any 501 (15.4) 138 (15.8) 0.031 (0.105) < 0.001 0.771

Values are presented as number (%) or mean ± standard deviation unless otherwise indicated.
SE, standard error; POS, place of service; HMO, health maintenance organization; PPO, preferred provider organization; EPO, exclusive pro-
vider network; CHF, congestive heart failure; DM, diabetes mellitus; DMcx, complicated diabetes mellitus; HTN, hypertension; HTNcx, com-
plicated hypertension; PHTN, pulmonary hypertension; PVD, peripheral vascular disease; SNF, skilled nursing facility; ED, Emergency De-
partment; DDD, degenerative disc disease; USD, United States dollar; rhBMP, recombinant human bone morphogenetic protein; CPT, current 
procedural terminology; OR, operating room.

Table 1. Univariate logistic regression (Continued)
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4. Predictive Modeling
Five models were generated and evaluated: a multivariate LR, 

a penalized LR model chosen based on elastic net variants of 
the LASSO, RF, stochastic GBM, and XGBoost. The evaluation 
of these models was based on AUC, sensitivity, and specificity. 
The parameters relevant to the prediction task were identified 
from the variable importance scores, which were calculated for 
each model and used to improve its interpretability. For model 
generation and tuning details, refer to the Supplementary Text 
and Table 1.

5. Statistical Analysis
R ver. 3.5.1 (R Foundation for Statistical Computing, Vienna, 

Austria) was used to perform all statistical analyses. To determine 
the risk factors associated with readmissions (Table 1), univari-
ate LR models were generated. To determine the strength of 
each variable on readmission outcomes, the McFadden Pseudo 
R2 was computed,19 and the model performance metrics (i.e., 
AUC, specificity, and sensitivity) were measured using the “car-
et” statistical package.20 For all experiments, statistical signifi-
cance was defined as p< 0.05.

RESULTS

Of the 4,130 patients analyzed in this study, 874 (21.2%) were 
readmitted within 30 days following surgery. Demographic, 
medical, socioeconomic, and surgical characteristics were ana-
lyzed (Table 1) for all patients who met the selection criteria 
(Fig. 1). Notably, a univariate LR model identified patient age, 
insurance plan type, and Medicare use as highly associated with 
readmissions (p< 0.001). Other variables associated with read-
missions were household size and income, presence of an assis-
tant surgeon, number of diagnoses, and length of stay (p< 0.001). 
Readmitted patients were, on average, older (69.1 years vs.  
60.6 years), more likely to have Medicare (81.1% vs. 43.3%), 
and experienced greater lengths of stay (5.5% vs. 4.8%, p< 0.001). 
These patients also had greater number of diagnoses (5.7% vs. 
4.7%), were significantly more likely to be transferred to a skilled 
nursing facility (SNF) (63.5% vs. 1.7%), and were more likely to 
experience postoperative urinary complications (3% vs. 1%, p<  
0.001).

Based on the risk factors the univariate LR model associated 
with readmissions, 5 models were generated and evaluated 
(GBM, XGBoost, RF, LASSO, and MLR). The performance 
metrics of these 5 models were measured by using a 50% ran-
dom sample of the data for training and the remaining 50% for 
testing (Table 2). GBM outperformed all other models, with an 
AUC of over 15 independent runs (mean± standard deviation, 
0.844 ± 0.015). Based on these findings, new versions of the 
GBM (top-performing) and MLR (bottom-performing) mod-
els were generated. However, this time, instead of using a 50% 
random sample of data, all the data from 2014–2016 was used 
to train the models, and all 2017 cohort data was used to test 
their performance metrics (Table 3). When comparing the AUC 
mean values (0.846 vs. 0.829, p< 0.001), the GBM model sig-
nificantly outperformed the MLR model. The specificity of the 
GBM model was also superior to that of the MLR model (0.986 
vs. 0.966, p< 0.001). The 3 predictors with the greatest relative 
influence on the GBM model were the discharge status of the 

Table 2. Performance metrics of models generated using 50% 
train and 50% test data splits

Model AUC

GBM 0.844 ± 0.015

XGBoost 0.842 ± 0.016

RF 0.843 ± 0.015

LASSO 0.833 ± 0.021

LR 0.819 ± 0.021

Values are presented as mean ± standard deviation.
AUC, area under the receiver operative curve; GBM, Gradient Boost-
ing Machine; XGBoost, extreme gradient boosting; RF, random for-
est; LASSO, least absolute shrinkage and selection operator; LR, tra-
ditional logistic regression.

Table 3. Performance metrics of GBM and LR models generated using data from 2004–2016 for training and data from 2017 for 
testing

Variable GBM LR Difference 95% CI p-value

AUC 0.846 ± 0.016 0.829 ± 0.018 0.0170 0.012–0.022 < 0.001

Sensitivity 0.610 ± 0.033 0.625 ± 0.037 0.0152 0.021–0.010 < 0.001

Specificity 0.986 ± 0.002 0.966 ± 0.009 0.0195 0.014–0.025 < 0.001

Values are presented as mean ± standard deviation unless otherwise indicated.
GBM, Gradient Boosting Machine; LR, traditional logistic regression; CI, confidence interval; AUC, area under the receiver operative curve.
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patients, the total billed charge of admission, and the length of 
stay (Fig. 2). Additional factors associated with increased read-
missions included the patient’s age, number of prior outpatient 
visits, as well as the number of procedural and diagnosis codes 
for initial admission (Fig. 2).

To determine the outcomes of applying interventions to the 
top 25% of patients with the highest probability of readmission 
as determined by the GBM model, we subsequently used the 
GBM model on 2017 model-naive, inflation-adjusted, all-payer 
national estimates of 30-day surgical readmissions (Table 4). In 
the 2017 data, we analyzed 490 patients admitted between Jan-
uary and November, of which 133 (27.2%) had been readmit-
ted within 30 days. Of these, the GBM model flagged 105 pa-
tients as constituting the top 25% of patients with the highest 
readmission probability, 99 of which were accurately identified 
by the model as having been readmitted, giving a true positive 
rate of 94% (105 top 25% high-risk patients/99 truly readmit-
ted). Out of the remaining 385 patients who were not in the top 
25th percentile of high readmission likelihood, 35 patients were 
nonetheless eventually readmitted, resulting in a missed patient 
rate of 9% (35 readmitted patients/385 unlikely readmissions). 
The GBM model predicted an estimated total costs savings of 

$803,633 over 11 months as a result of reduced readmissions. 
These cost savings were calculated assuming that 50% of read-
missions were prevented by the interventions.

The LACE index was similarly analyzed: in this case, 62 pa-
tients out of the 105 total patients (top 25%) with the highest 
probability of readmission were correctly identified as having 
been readmitted (true positive rate of 59%). Out of a total of 
385 patients that were not included in the top 25th percentile of 
high readmission likelihood, 73 patients were eventually read-
mitted (missed patient rate of 19%). The estimated total cost 
savings associated with reduced readmissions was $535,755 
over an 11-month span. Together, this data shows that the GBM 
model outperformed the LACE index model when comparing 
the true positive rates (94% vs. 59%), missed patient rates (9% 
vs. 19%), and the cost savings ($803,633 vs. $535,755). In fact, 
the GBM model estimated a 50% decrease in readmission-as-
sociated costs when compared to those achieved by the LACE 
index model (Table 4).

DISCUSSION

In order to develop interventions that reduce readmission 

Fig. 2. Graph depicts the relative weighting of various risk factors for 30-day readmissions, as determined by a Gradient Boost-
ing Machine (GBM) machine learning model. The y-axis lists the risk factors, including both linear terms and polynomial trans-
formations of certain variables like “Year of surgery” and “Household income.” The x-axis displays the relative weightings of each 
risk factor, scaled against the highest weighted risk factor, which was “Transfer to skilled nursing facility” (not shown in this part 
of the chart). Each bar’s length indicates the strength of its association with 30-day readmissions, where a longer bar signifies a 
stronger predictor. ED, Emergency Department.
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rates, it is critical to accurately identify patients who are at high 
risk of being readmitted. One strategy is to identify high-risk 
patients by analyzing the independent risk factors that are asso-
ciated with readmission probabilities. In this study, we used epi-
demiological and supervised ML algorithms to analyze 4,130 
patients undergoing PCF. We identified the demographic, so-
cioeconomic, clinical, and procedural characteristics associated 
with patient readmissions within 30 days.

Univariate LR analysis found that patients’ age, their Medi-
care usage, their insurance plan type, the number of diagnoses, 
and length of hospital stay were all variables that influenced the 
readmission rates (Table 1). Interestingly, patients’ discharge to 
the SNF was strongly associated with readmissions in both mul-
tivariate and univariate LR models. Previous studies have iden-
tified similarly significant associations between transfer to SNF 
and readmission rates; in fact, as many as one in 4 SNF patients 
experience re-hospitalization within 30 days from their initial 
admission.7,21,22

While LR models are commonly used to study and predict 
unplanned readmission rates, other ML models with the reso-
lution to capture interactions between factors have become 
popular tools to predict patient outcomes and readmissions.11,13 
A growing body of medical literature has probed the potential 
of these models in supporting clinical decision-making and im-
plementation.6-10 Here, we used supervised classification and 

regression ML algorithms to predict readmissions and identify 
the risk factors that influence these rates. We found that while 
GBM identified patients’ discharge status, charge of admission, 
and length of stay as the most influential predictors of readmis-
sions, MLR identified patients with comorbidities and number 
of procedure codes as the relevant variables. An explanation for 
this finding is that LR models make linear predictions on read-
missions by computing principled estimates of confidence in-
tervals, while other ML algorithms (i.e., GBM, LASSO, etc.), 
capture interactions between risk factors and nonlinear rela-
tionships. The observed differences in predictor weighting be-
tween models shows that, depending on which model is em-
phasized, it is possible to overestimate or underestimate the rel-
evance of readmission predictors. Thus, by leveraging different 
ML models, it is possible to capture more realistic linear and 
nonlinear relationships.

Next, we tested the performance of the ML models, specifi-
cally, their ability in predicting 30-day readmissions. Compared 
to previously reported ML models that predicted readmissions 
following cervical spine surgery with an AUC mean of 0.63–
0.81, our GBM model achieved a mean AUC value of 0.865—
the highest predictability performance recorded to date.9,10,23-28 
One explanation for this improved performance is that the 
variables chosen for the analysis and consequentially, the mod-
el’s relative weighting of these variables is unique to this study. 

Table 4. Predictive performance of GBM and LACE index on 2017 test data and associated cost savings

Month
Top 25% 

highest risk 
patients (n)

True positive rate on top 25% Bottom 75% 
risk patients 

(n)

Missed patients rate Estimated cost 
savings* using 
GBM (USD)

Average cost 
savings using 

GBM over LACEGBM LACE GBM LACE

January 12 1.00 0.60 38 0.03 0.16 97,410 100%

February 5 1.00 0.60 18 0.17 0.26 40,588 67%

March 12 1.00 0.70 36 0.22 0.35 97,410 71%

April 11 1.00 0.80 36 0.17 0.26 89,293 38%

May 4 1.00 0.38 27 0.04 0.11 32,470 33%

June 5 1.00 0.83 21 0.14 0.24 40,588 0%

July 7 1.00 0.67 33 0.09 0.13 56,823 17%

August 11 1.00 0.64 39 0.10 0.24 89,293 57%

September 6 1.00 0.50 39 0.05 0.09 48,705 20%

October 13 0.85 0.71 48 0.15 0.16 89,293 10%

November 12 0.83 0.43 52 0.06 0.14 81,175 67%

All 105 0.94 0.59 385 0.09 0.19 803,633 50%

GBM, Gradient Boosting Machine; LACE, Length patient stay in the hospital, Acuity of admission of patient in the hospital, Comorbidity, and 
Emergency visit; USD, United States dollar.
*Cost savings were calculated under the assumption that 50% of readmissions were prevented via targeted interventions for patients correctly 
identified by the model as likely for readmission.
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For instance, the most influential variables for the GBM model 
included the discharge destination (i.e., SNF), total charge billed 
for admission, length of stay, and patient age. To the best of our 
knowledge, the patient’s discharge destination has been ana-
lyzed as a model predictor for 30-day readmission by only one 
lumbar spine study, which similarly found that the discharge 
destination was the most influential variable accounted by the 
model.7

Next, we used the GBM model to determine the top 25% of 
patients with the greatest probability of having unplanned read-
missions. We then simulated the clinical outcomes of imple-
menting an intervention for these flagged patients. We chose 
the 25% threshold value to account for hospital systems’ vary-
ing capacities to apply interventions for high-risk patients. In 
practice, however, this threshold should be tuned to the indi-
vidual capacities and resources of different hospital systems. Of 
all the patients flagged as having high readmission probabilities, 
94% were accurately predicted by the GBM model. The bottom 
75% of patients with a high risk for readmissions totaled 385 
patients. Of these, only 25 patients were eventually readmitted, 
accounting for a missed patient rate of 9%. When interventions 
were simulated for the top 25%, the GBM model presented in 
this study predicted an estimated cost savings of $803,633 over 
an 11-month period. It is important to note that this estimated 
cost savings was computed under the assumption that effective 
intervention(s) led to half of the high-risk patients not being re-
admitted.

The findings presented here demonstrate that ML models can 
identify patients with a high risk of readmission and provide 
targeted interventions that reduce these patient’s probabilities 
of being readmitted. While certain identified risk factors, such 
as age are inherently non-modifiable, the proposed interven-
tions are designed to mitigate the risks associated with modifi-
able factors of patient’s postoperative care. For instance, while 
we cannot alter a patient’s age, hospital programs can proactively 
target those discharged to skilled nursing facilities—a predictor 
identified by the GBM model for readmissions—by increasing 
follow-up calls, home visits, and telemonitoring practices, all of 
which have been shown to reduce readmissions.29-31 This en-
sures sustained care and strict adherence to postdischarge pro-
tocols, effectively mitigating the risk of readmission. Such mea-
sures would be particularly important for complex or invasive 
procedures, which are often associated with higher billed 
charges of admission, greater number of procedural and diag-
nostic codes at outset, and higher number of outpatient visits—
all of which are factors that our GBM model identified as pre-

dictors of greater patient readmissions. Similarly, patient educa-
tion is also important in the context of complicated diagnoses 
and procedures. Empirical evidence suggests that communica-
tion interventions at the point of discharge, including medica-
tion counseling and disease-specific education, can significantly 
reduce the likelihood of 30-day readmissions.32 By integrating 
structured educational programs that specifically target patients 
with the highest risks of readmissions, as defined by the GBM 
model, we can equip patients with the knowledge to manage 
their conditions more effectively, recognize early signs of com-
plications, and understand when to seek medical help. Last, med-
ication management can address the risks associated with poly-
pharmacy and complex medication regimens often seen in pa-
tients with multiple codes for procedures and diagnoses. A 
pharmacist-led approach, encompassing medication reconcilia-
tion, a patient-specific medication care plan, discharge counsel-
ing, and follow-up contact, can substantially decrease the inci-
dence of medication errors postdischarge, thereby lessening the 
chances of readmission or emergency department visits.33 By 
using ML models to identify patients at high risk of readmis-
sion and targeting these patients specifically, resources may be 
optimally allocated while contributing to a reduction in the 
costs associated with readmitting these high-risk patients. None-
theless, future research could benefit from a closer examination 
of the direct impact of these interventions on readmission rates.

Both our cost savings simulation and previously reported 
data provide evidence that reducing the number of readmissions, 
even slightly, can significantly lower the economic burden of 
unplanned readmissions.34 With further fine-tuning and cus-
tomization, these models could (1) aid clinicians in identifying 
patients with high readmission risks; (2) guide perioperative 
resource allocation to decrease readmission probabilities; and 
(3) decrease overall healthcare costs.

In addition to comparing the GBM model to univariate and 
multivariate LR models, we also analyzed how the performance 
of our ML algorithm compared to that of clinically-employed 
predictive models of readmission (i.e., the LACE index model). 
When we analyzed the top 25% of patients with a high risk for 
unplanned readmissions, we found that in comparison to the 
LACE index model, the GBM had a higher true positive rate of 
readmission, a 50% higher cost savings from readmission pre-
vention, and a lower missed patient rate. Several factors may 
explain GBM’s higher performance when compared to the 
LACE index model. For instance, we provided the ML model 
with an expanded set of predictors to utilize and GBM has an 
adaptive learning framework that can capture and leverage in-
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teractions between variables, including nonlinear relationships. 
Currently, there is no consensus on the performance power of 
the LACE index; while some reports strongly support the mod-
el’s ability to discriminate between variables,35-37 others cite the 
lack of strong predictors38 as reason for the model’s moderate to 
poor discrimination.38-41

 Our study generated models that capture patients at high 
risk of readmissions and simulates how hypothetical clinical in-
terventions can reduce healthcare utilizations costs. However, 
there are several limitations worth noting when interpreting 
these results. First, the insurance claims database used was not 
specific to spine surgery, which can impact accuracy.42,43 Second, 
we must understand the limitations of using administrative 
claims data to guide and alter clinical practice.42,43 For example, 
during the study period, insurers and hospitals attempted to 
decrease patient’s length of stay by discharging to home. This 
creates confounds in the associations captured between read-
mission probabilities and patient’s length of stay. Third, to sim-
ulate how intervening of high-risk patients would impact health-
care utilization, we assumed that 50% of the theoretical inter-
ventions were effective, which could vary by hospital systems.

These limitations highlight substantial avenues for improve-
ment. Although our study represents an initial effort to utilize 
ML models to predict readmission rates and mitigate health-
care costs, future prospective studies and clinical trials are 
needed to refine, validate, and enhance the ML algorithms pre-
sented. Moreover, exploring the utilization of alternative data 
sources beyond administrative claims (i.e., prospective datasets) 
and predicting 90 days in addition to 30-day readmission rates, 
could further enhance the robustness and generalizability of 
our findings.

CONCLUSION

ML models, including MLR, have identified different risk 
factors associated with patients’ unplanned readmission proba-
bilities. This is potentially a result of each model’s capacity to 
measure nonlinear relationships and interfactor interactions, 
and it suggests that models can complement each other when 
capturing risk predictors for readmissions following PCF. In 
addition, we found that when comparing 2 ML models, GBM 
outperformed the MLR model as measured by the mean AUC. 
These findings support the rationale for the continued genera-
tion, improvement, and eventual implementation of ML mod-
els in order to reduce readmissions and associated healthcare 
utilization costs.

NOTES

Supplementary Material: Supplementary Text and Table 1 
can be found via https://doi.org/10.14245/ns.2347340.670.

Conflict of Interest: The authors have nothing to disclose.
Funding/Support: This study received no specific grant from 

any funding agency in the public, commercial, or not-for-profit 
sectors.

Author Contribution: Conceptualization: ADGS, PGR, DH, 
JKR, MR, DS, AMD; Data curation: PGR; Formal analysis: 
PGR; Methodology: PGR, DH, JKR, MR, DS, AMD; Project 
administration: ADGS, JKR, MR, DS, IJ, AMD; Visualization: 
ADGS; Writing – original draft: ADGS; Writing – review & ed-
iting: ADGS, PGR, SST, IJ, AMD.

ORCID 
Aneysis D. Gonzalez-Suarez: 0000-0003-3745-763X
Paymon G. Rezaii: 0000-0002-4803-0853
Daniel Herrick: 0000-0003-1066-4751
Seth Stravers Tigchelaar: 0000-0002-2207-9034
John K. Ratliff: 0000-0003-3452-1907
Mirabela Rusu: 0000-0002-0372-0367
David Scheinker: 0000-0001-5885-8024
Ikchan Jeon: 0000-0002-1293-2724
Atman M. Desai: 0000-0001-8387-3808

REFERENCES

1. Youssef JA, Heiner AD, Montgomery JR, et al. Outcomes of 
posterior cervical fusion and decompression: a systematic 
review and meta-analysis. Spine J 2019;19:1714-29.

2. Badiee RK, Mayer R, Pennicooke B, et al. Complications 
following posterior cervical decompression and fusion: a re-
view of incidence, risk factors, and prevention strategies. J 
Spine Surg 2020;6:323-33. 

3. Schafer E, Bazydlo M, Schultz L, et al. Rates and risk factors 
associated with 90-day readmission following cervical spine 
fusion surgery: analysis of the Michigan Spine Surgery Im-
provement Collaborative (MSSIC) registry. Spine J 2020;20: 
708-16.

4. Martin BI, Mirza SK, Spina N, et al. Trends in lumbar fusion 
procedure rates and associated hospital costs for degenera-
tive spinal diseases in the united states, 2004 to 2015. Spine 
(Phila Pa 1976) 2019;44:369-76.

5. Neifert SN, Martini ML, Yuk F, et al. Predicting trends in 
cervical spinal surgery in the United States from 2020 to 



Machine Learning and 30-Day Readmissions Postcervical FusionsGonzalez-Suarez AD, et al.

https://doi.org/10.14245/ns.2347340.67012 www.e-neurospine.org

2040. World Neurosurg 2020;141:e175-81.
6. Hopkins BS, Yamaguchi JT, Garcia R, et al. Using machine 

learning to predict 30-day readmissions after posterior lum-
bar fusion: an NSQIP study involving 23,264 patients. J Neu-
rosurg Spine November 2019;32:399-406.

7. Kalagara S, Eltorai AEM, Durand WM, et al. Machine learn-
ing modeling for predicting hospital readmission following 
lumbar laminectomy. J Neurosurg Spine 2018;30:344-52.

8. McGirt MJ, Sivaganesan A, Asher AL, et al. Prediction mod-
el for outcome after low-back surgery: individualized likeli-
hood of complication, hospital readmission, return to work, 
and 12-month improvement in functional disability. Neuro-
surg Focus 2015;39:E13.

9. Parker SL, Sivaganesan A, Chotai S, et al. Development and 
validation of a predictive model for 90-day readmission fol-
lowing elective spine surgery. J Neurosurg Spine 2018;29: 
327-31.

10. Goyal A, Ngufor C, Kerezoudis P, et al. Can machine learn-
ing algorithms accurately predict discharge to nonhome fa-
cility and early unplanned readmissions following spinal fu-
sion? Analysis of a national surgical registry. J Neurosurg 
Spine 2019;31:568-78.

11. Artetxe A, Beristain A, Graña M. Predictive models for hos-
pital readmission risk: a systematic review of methods. Com-
put Methods Programs Biomed 2018;164:49-64.

12. Rezaii PG, Herrick D, Ratliff JK, et al. Identification of factors 
associated with 30-day readmissions after posterior lumbar 
fusion using machine learning and traditional models: a na-
tional longitudinal database study. Spine (Phila Pa 1976) 2023; 
48:1224-33.

13. Elixhauser A, Steiner C, Harris DR, et al. Comorbidity mea-
sures for use with administrative data. Med Care 1998;36: 
8-27.

14. Quan H, Li B, Couris CM, et al. Updating and validating the 
Charlson comorbidity index and score for risk adjustment 
in hospital discharge abstracts using data from 6 countries. 
Am J Epidemiol 2011;173:676-82.

15. Hasan O, Meltzer DO, Shaykevich SA, et al. Hospital read-
mission in general medicine patients: a prediction model. J 
Gen Intern Med 2010;25:211-9.

16. Bamber D. The area above the ordinal dominance graph 
and the area below the receiver operating characteristic graph. 
J Math Psychol 1975;12:387-415.

17. Qasim M, Andrews RM. Post-surgical readmissions among 
patients living in the poorest communities, 2009. In: Health-
care Cost and Utilization Project (HCUP) statistical briefs. 

Rockville (MD); Agency for Healthcare Research and Qual-
ity (US); 2006.

18. Akins PT, Harris J, Alvarez JL, et al. Risk factors associated 
with 30-day readmissions after instrumented spine surgery 
in 14,939 patients: 30-day readmissions after instrumented 
spine surgery. Spine (Phila Pa 1976) 2015;40:1022-32.

19. Hauber AB, González JM, Groothuis-Oudshoorn CGM, et 
al. Statistical methods for the analysis of discrete choice ex-
periments: a report of the ISPOR conjoint analysis good re-
search practices task force. Value Health 2016;19:300-15.

20. Kuhn M. Building predictive models in R using the caret 
package. J Stat Softw 2008;28:1-26.

21. Kim LD, Pfoh ER, Hu B, et al. Derivation and validation of a 
model to predict 30-day readmission in surgical patients 
discharged to skilled nursing facility. J Am Med Dir Assoc 
2019;20:1086-90.e2.

22. Mor V, Intrator O, Feng Z, et al. The revolving door of re-
hospitalization from skilled nursing facilities. Health Aff 
(Millwood) 2010;29:57-64.

23. Devin CJ, Bydon M, Alvi MA, et al. A predictive model and 
nomogram for predicting return to work at 3 months after 
cervical spine surgery: an analysis from the Quality Outcomes 
Database. Neurosurg Focus 2018;45:E9.

24. Merali ZG, Witiw CD, Badhiwala JH, et al. Using a machine 
learning approach to predict outcome after surgery for de-
generative cervical myelopathy. PLoS One 2019;14:e0215133.

25. Asher AL, Devin CJ, Kerezoudis P, et al. Predictors of patient 
satisfaction following 1- or 2-level anterior cervical discec-
tomy and fusion: insights from the Quality Outcomes Data-
base. J Neurosurg Spine 2019;31:835-43.

26. Siccoli A, de Wispelaere MP, Schröder ML, et al. Machine 
learning-based preoperative predictive analytics for lumbar 
spinal stenosis. Neurosurg Focus 2019;46:E5.

27. Lopez CD, Boddapati V, Lombardi JM, et al. Artificial learn-
ing and machine learning applications in spine surgery: a 
systematic review. Global Spine J 2022;12:1561-72.

28. Lubelski D, Hersh A, Azad TD, et al. Prediction models in 
degenerative spine surgery: a systematic review. Global Spine 
J 2021;11(1_suppl):79S-88S.

29. Stewart S, Pearson S, Horowitz JD. Effects of a home-based 
intervention among patients with congestive heart failure 
discharged from acute hospital care. Arch Intern Med 1998; 
158:1067-72.

30. Dudas V, Bookwalter T, Kerr KM, et al. The impact of follow-
up telephone calls to patients after hospitalization. Am J Med 
2001;111(9B):26S-30S.



Machine Learning and 30-Day Readmissions Postcervical FusionsGonzalez-Suarez AD, et al.

https://doi.org/10.14245/ns.2347340.670  www.e-neurospine.org  13

31. Dawson NL, Hull BP, Vijapura P, et al. Home telemonitoring 
to reduce readmission of high-risk patients: a modified in-
tention-to-treat randomized clinical trial. J Gen Intern Med 
2021;36:3395-401.

32. Becker C, Zumbrunn S, Beck K, et al. Interventions to im-
prove communication at hospital discharge and rates of re-
admission: a systematic review and meta-analysis. JAMA 
Netw Open 2021;4:e2119346.

33. Phatak A, Prusi R, Ward B, et al. Impact of pharmacist in-
volvement in the transitional care of high-risk patients through 
medication reconciliation, medication education, and post-
discharge call-backs (IPITCH Study). J Hosp Med 2016;11: 
39-44.

34. Sweeney JF. Postoperative complications and hospital read-
missions in surgical patients: an important association. Ann 
Surg 2013;258:19-20.

35. Garrison GM, Robelia PM, Pecina JL, et al. Comparing per-
formance of 30-day readmission risk classifiers among hos-
pitalized primary care patients. J Eval Clin Pract 2017;23: 
524-9.

36. Spiva L, Hand M, VanBrackle L, et al. Validation of a predic-
tive model to identify patients at high risk for hospital read-
mission. J Healthc Qual 2016;38:34-41.

37. van Walraven C, Dhalla IA, Bell C, et al. Derivation and val-
idation of an index to predict early death or unplanned re-
admission after discharge from hospital to the community. 
CMAJ 2010;182:551-7.

38. Cotter PE, Bhalla VK, Wallis SJ, et al. Predicting readmis-
sions: poor performance of the LACE index in an older UK 
population. Age Ageing 2012;41:784-9.

39. Tong L, Erdmann C, Daldalian M, et al. Comparison of pre-
dictive modeling approaches for 30-day all-cause non-elec-
tive readmission risk. BMC Med Res Methodol 2016;16:26.

40 Low LL, Lee KH, Hock Ong ME, et al. Predicting 30-day re-
admissions: performance of the LACE index compared with 
a regression model among general medicine patients in Sin-
gapore. Biomed Res Int 2015;2015:169870.

41. Robinson R, Hudali T. The HOSPITAL score and LACE in-
dex as predictors of 30 day readmission in a retrospective 
study at a university-affiliated community hospital. PeerJ 
2017;5:e3137.

42. Kestle JR. Administrative database research. J Neurosurg 
2015;122:441-2. 

43. Oravec CS, Motiwala M, Reed K, et al. Big data research in 
neurosurgery: a critical look at this popular new study de-
sign. Neurosurgery 2018;82:728-46.



Machine Learning and 30-Day Readmissions Postcervical FusionsGonzalez-Suarez AD, et al.

https://doi.org/10.14245/ns.2347340.670  www.e-neurospine.org 

Five different machine learning (ML) models were created 
and evaluated using the area under the receiver operating char-
acteristic curve (AUC), sensitivity, and specificity. The models 
used were logistic regression (LR), penalized LR (chosen 
through elastic net variants of least absolute shrinkage and se-
lection operator [LASSO]), random forest (RF), stochastic gra-
dient boosting machine (GBM), and extreme gradient boosting 
(XGBoost). Patients who had missing data for any predictor 
were excluded from training and testing of all models, which 
resulted in 3,215 omitted patients. Categorical predictors were 
transformed into binary format using one-hot encoding.1

The data used in the study were divided into 2 sets using a 
random partitioning technique. The training set consisted of 
50% of the data, while the remaining 50% made up the test set. 
The partitioning was done in a way that ensured both sets had 
almost equal numbers of patients who were readmitted and 
those who were not. The training set was used to estimate 
model parameters and fine-tune the models, while the test set 
was exclusively used to validate the performance of the models.

To ensure optimal performance, hyperparameters of each 
model, including RF, GBM, XGBoost, and LASSO, were fine-

Supplementary Table 1. Parameter tuning characteristics for each model

Model Package Tuning parameters Parameter values considered

Parameter values for top 
performing model

50%–50% 
data split

Pre-2017:
2017 data split

Logistic regression GLM N/A N/A N/A N/A

Random forests Random forest No. of variables available for  
splitting at each tree node

1, 2, 3, … 15 6 N/A

Gradient boosting 
machine

GBM Number of trees 150, 160, 170, … 250 220 220

Shrinkage 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1 0.02 0.02

Interaction depth 3, 10, 12, 14, … 20 3 2

Minimum observations in node 2, 4, 6, 8, 10 6 12

Extreme gradient 
boosting

XGBoost No. of rounds 100, 200 100 N/A

Max depth 3, 10, 15, 20, 25 20 N/A

Eta 0.1 0.10 N/A

Gamma 0 0 N/A

ColSample_ByTree 0.5, 0.6, 0.7, 0.8, 0.9 0.50 N/A

Min_Child_Weight 1 1 N/A

Subsample 1 1 N/A

Penalized logistic 
regression

GLMnet Lambda regularization parameter 0.01, 0.02, 0.03, … 0.1 0.03 N/A

Alpha 0.5, 1.5, 2, 2.5 1 N/A

GLM, generalized linear model; N/A, not applicable; GBM, Gradient Boosting Machine; XGBoost, extreme gradient boosting.

tuned using a 5-fold cross-validation technique that was re-
peated 3 times. This involved creating a grid of possible param-
eter values, with each column representing a specific parameter 
and each row representing a unique set of parameter values. 
The training data was then divided into five equal-sized folds, 
each containing a proportion of readmitted patients similar to 
the entire training set. The model was trained on four folds and 
tested on the fifth fold, which was held out to estimate the per-
formance measure (AUC). This process was repeated for each 
fold, and the average of the five resampled estimates was used 
as a single 5-fold cross-validation estimate of model perfor-
mance. The cross-validation procedure was repeated three 
times to increase precision while maintaining low bias, and the 
final estimate of model performance was generated by averag-
ing the performance estimates of all three instances of 5-fold 
cross-validation. The parameter set that produced the best per-
formance estimate was used to define the final tuned model. 
Further details on the parameter tuning for each model can be 
found in the Supplementary Table 1.

In each resampling iteration of the 5-fold cross-validation 
process, a series of preprocessing steps were applied. First, near-

Supplementary Text. Data preprocessing, model generation, and model tuning
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zero variance predictors and highly correlated predictors were 
eliminated to enhance the subsequent model generation pro-
cess. Predictors were considered near-zero variance if they met 
two conditions: (1) they had less than 10% of the total number 
of samples as the number of distinct values, and (2) the ratio of 
the frequency of the most common value to the frequency of 
the second most common value was greater than 19:1. Predic-
tors with pair-wise correlations of 0.9 or higher were deemed 
highly correlated, and the correlated predictor with the largest 
mean absolute correlation was removed. Second, predictors 
were normalized to a mean of zero and a variance of one. Fi-
nally, the SMOTE (Synthetic Minority Over-sampling Tech-
nique)2 was used to help optimize the model and specifically, 
the imbalance between the proportion of readmitted and non-
readmitted patients.

The tuned models were compared based on their mean 
AUCs, and the GBM model was found to have the largest mean 
AUC. Two additional models were then generated, LR and 
GBM, using a different training and testing set. This new train-
ing set included data from January 1, 2004 up to December 31, 
2016, while the test set included data from January 1, 2017 to 
November 30, 2017. The GBM model was then used to evalu-
ate its applicability in clinical practice. Specifically, the model 
was used to identify the top 25% of patients at the highest risk 
of readmission each month, and the prediction accuracy of the 
model was assessed. The model was evaluated by counting the 

true positives and calculating the cost savings associated with 
reducing readmissions, assuming that 50% of interventions on 
these patients prevented readmission. The same clinical scenar-
io was also applied using the LACE index model,3 a previously-
validated readmission model that uses four variables to predict 
unplanned 30-day readmission after hospital discharge: length 
of stay (L), acuity of the admission (A), comorbidity of the pa-
tient (C), and emergency department use in the duration of  
6 months before admission (E).4 The cost savings were com-
pared between the LACE index model and the top-performing 
GBM model.
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