5. Kim Y, Park YK, Cho HY, et al. Long-term changes in expressions of spinal glutamate transporters after spinal cord injury. Brain Res 2011;1389:194-9.
6. Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 2006;48:394-403.
8. Zhang AL, Hao JX, Seiger A, et al. Decreased GABA immunoreactivity in spinal cord dorsal horn neurons after transient spinal cord ischemia in the rat. Brain Res 1994;656:187-90.
9. Sah R, Galeffi F, Ahrens R, et al. Modulation of the GABA(A)- gated chloride channel by reactive oxygen species. J Neurochem 2002;80:383-91.
12. Schmidtko A, Luo C, Gao W, et al. Genetic deletion of synapsin II reduces neuropathic pain due to reduced glutamate but increased GABA in the spinal cord dorsal horn. Pain 2008;139:632-63.
13. Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989;37:111-23.
14. Wieters F, Weiss Lucas C, Gruhn M, et al. Introduction to spasticity and related mouse models. Exp Neurol 2021;335:113491.
15. Watanabe M, Maemura K, Kanbara K, et al. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 2002;213:1-47.
16. Koch U, Magnusson AK. Unconventional GABA release: mechanisms and function. Curr Opin Neurobiol 2009;19:305-10.
17. Jasmin L, Wu MV, Ohara PT. GABA puts a stop to pain. Curr Drug Targets CNS Neurol Disord 2004;3:487-505.
18. Magoul R, Onteniente B, Geffard M, et al. Anatomical distribution and ultrastructural organization of the GABAergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies. Neuroscience 1987;20:1001-9.
19. Bormann J. The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 2000;21:16-9.
21. Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 2006;98:641-53.
26. Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev 2021;101:259-301.
27. Siniscalco D, Rossi F, Maione S. Molecular approaches for neuropathic pain treatment. Curr Med Chem 2007;14:1783-7.
28. Enna SJ, McCarson KE. The role of GABA in the mediation and perception of pain. Adv Pharmacol 2006;54:1-27.
30. Panter SS, Yum SW, Faden AI. Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol 1990;27:96-9.
32. Diaz-Ruiz A, Montes S, Salgado-Ceballos H, et al. Enzyme activities involved in the glutamate-glutamine cycle are altered to reduce glutamate after spinal cord injury in rats. Neuroreport 2016;27:1317-22.
34. Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010;27:729-37.
35. Keane RW, Davis AR, Dietrich WD. Inflammatory and apoptotic signaling after spinal cord injury. J Neurotrauma 2006;23:335-44.
37. Dieb W, Hafidi A. Mechanism of GABA involvement in post-traumatic trigeminal neuropathic pain: activation of neuronal circuitry composed of PKCγ interneurons and pERK1/2 expressing neurons. Eur J Pain 2015;19:85-96.
38. Gosselin RD, Bebber D, Decosterd I. Upregulation of the GABA transporter GAT-1 in the gracile nucleus in the spared nerve injury model of neuropathic pain. Neurosci Lett 2010;480:132-7.
39. Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain 2004;109:379-88.
41. Liu D, Xu GY, Pan E, et al. Neurotoxicity of glutamate at the concentration released upon spinal cord injury. Neuroscience 1999;93:1383-9.
42. Yezierski PR, Liu S, Ruenes LG, et al. Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 1998;75:141-55.
44. Crown ED, Ye Z, Johnson KM, et al. Increases in the activated forms of ERK 1/2, p38 MAPK, and CREB are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Exp Neurol 2006;199:397-407.
47. Liu S, Ruenes GL, Yezierski RP. NMDA and non-NMDA receptor antagonists protect against excitotoxic injury in the rat spinal cord. Brain Res 1997;756:160-7.
48. Bennett AD, Everhart AW, Hulsebosch CE. Intrathecal administration of an NMDA or a non-NMDA receptor antagonist reduces mechanical but not thermal allodynia in a rodent model of chronic central pain after spinal cord injury. Brain Res 2000;859:72-82.
53. Côté MP. Role of chloride cotransporters in the development of spasticity and neuropathic pain after Spinal Cord Injury. In: Tang Xet al., editors. Neuronal Chloride Transporters in Health and Disease. Cambridge (MA): Academic Press; 2020. p. 463-516.
58. Knabl J, Witschi R, Hösl K, et al. Reversal of pathological pain through specific spinal GABA
A receptor subtypes. Nature 2008;451:330-4.
59. Kuzniecky R, Ho S, Pan J, et al. Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology 2002;58:368-72.
61. Liu W, Liu Z, Liu L, et al. A novel human foamy virus mediated gene transfer of GAD
67 reduces neuropathic pain following spinal cord injury. Neurosci Lett 2008;432:13-8.
62. Liu J, Wolfe D, Hao S, et al. Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther 2004;10:57-66.
63. Ogawa N, Terashima T, Oka K, et al. Gene therapy for neuropathic pain using dorsal root ganglion-targeted helperdependent adenoviral vectors with GAD
67 expression. Pain Rep 2018;3:e695.
64. Khan ZH, Majedi H, Hassan TA. Pain management in spinal cord injury: a narrative review. Arch Anesthesiol Crit Care 2019;5:62-8.
65. Amr YM. Multi-day low dose ketamine infusion as adjuvant to oral gabapentin in spinal cord injury related chronic pain: a prospective, randomized, double blind trial. Pain Physician 2010;13:245-9.
66. Finnerup NB, Biering-Sørensen F, Johannesen IL, et al. Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial. Anesthesiology 2005;102:1023-30.
68. Chiodo A. Pain management with interventional spine therapy in patients with spinal cord injury: a case series. J Spinal Cord Med 2005;28:338-42.
69. Freo U, Ambrosio F, Furnari M, et al. Lidocaine 5% medicated plaster for spinal neuropathic pain. J Pain Palliat Care Pharmacother 2016;30:111-3.
70. Sisti MS, Nishida F, Zanuzzi CN, et al. Lidocaine protects neurons of the spinal cord in an excitotoxicity model. Neurosci Lett 2019;698:105-12.
71. Finnerup NB, Sindrup SH, Bach FW, et al. Lamotrigine in spinal cord injury pain: a randomized controlled trial. Pain 2002;96:375-83.
74. Lakra C, Cohen H. A clinical review of the use of botulinum toxin type A in managing central neuropathic pain in patients with spinal cord injury. J Spinal Cord Med 2020 Dec;2:1-5.
https://doi.org/10.1080/10790268.2020.1848278. [Epub].
76. Bu H, Jiao P, Fan X, et al. Botulinum toxin type A relieve neuropathic pain by suppressing the expression of CXCL13/CXCR5 and GAT-1 in chronic constriction injury rats. Research Square [Preprint] 2021;Available from:
https://www.researchsquare.com/article/rs-238483/v1.
77. Hama A, Sagen J. Antinociceptive effect of riluzole in rats with neuropathic spinal cord injury pain. J Neurotrauma 2011;28:127-34.
79. He Y, Benz A, Fu T, et al. Neuroprotective agent riluzole potentiates postsynaptic GABA(A) receptor function. Neuropharmacology 2002;42:199-209.
81. Wu XL, Liu L, Li YJ, et al. Synthesis, crystal structure, and antinociceptive effects of some new riluzole derivatives. Med Chem Res 2018;27:1374-83.
85. Shaw E, Saulino M. Management strategies for spinal cord injury pain updated for the twenty-first century. Phys Med Rehabil Clin N Am 2020;31:369-78.
86. Alves ND, de Castro-Costa CM, de Carvalho AM, et al. Possible analgesic effect of vigabatrin in animal experimental chronic neuropathic pain. Arq Neuropsiquiatr 1999;57:916-20.
87. Durdag E, Yildirim Z, Unlu NL, et al. Neuroprotective effects of vigabatrin on spinal cord ischemia-reperfusion injury. World Neurosurg 2018;120:e33-41.
89. Zaręba P, Gryzło B, Malawska K, et al. Novel mouse GABA uptake inhibitors with enhanced inhibitory activity toward mGAT3/4 and their effect on pain threshold in mice. Eur J Med Chem 2020;188:111920.
90. Oyama M, Watanabe S, Iwai T, et al. Distinct synaptic mechanisms underlying the analgesic effects of γ-aminobutyric acid transporter subtypes 1 and 3 inhibitors in the spinal dorsal horn. Pain 2022;163:334-49.
91. Gwak YS, Tan HY, Nam TS, et al. Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. J Neurotrauma 2006;23:1111-24.
93. Rode F, Jensen DG, Blackburn-Munro G, et al. Centrally-mediated antinociceptive actions of GABA(A) receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol 2005;516:131-8.
94. Sadeghi M, Manaheji H, Zaringhalam J, et al. Evaluation of the GABA
A receptor expression and the effects of muscimol on the activity of wide dynamic range neurons following chronic constriction injury of sciatic nerve in rats. Basic Clin Neurosci 2021;12:651-66.
96. Hao JX, Xu XJ, Yu YX, et al. Baclofen reverses the hypersensitivity of dorsal horn wide dynamic range neurons to mechanical stimulation after transient spinal cord ischemia; implications for a tonic GABAergic inhibitory control of myelinated fiber input. J Neurophysiol 1992;68:392-6.
97. Middleton JW, Siddall PJ, Walker S, et al. Intrathecal clonidine and baclofen in the management of spasticity and neuropathic pain following spinal cord injury: a case study. Arch Phys Med Rehabil 1996;77:824-6.
98. Kumru H, Benito-Penalva J, Kofler M, et al. Analgesic effect of intrathecal baclofen bolus on neuropathic pain in spinal cord injury patients. Brain Res Bull 2018;140:205-11.
99. Manion J, Khuong T, Harney D, et al. Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain. Pain 2020;161:379-87.
103. Eaton MJ, Wolfe SQ, Martinez M, et al. Subarachnoid transplant of a human neuronal cell line attenuates chronic allodynia and hyperalgesia after excitotoxic spinal cord injury in the rat. J Pain 2007;8:33-50.
105. Dugan EA, Jergova S, Sagen J. Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury. Exp Neurol 2020;327:113208.
114. Li Y, Bennett DJ. Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J Neurophysiol 2003;90:857-69.
117. Kakinohana O, Hefferan MP, Nakamura S, et al. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience 2006;141:1569-83.
119. Wienecke J, Westerdahl AC, Hultborn H, et al. Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity. J Neurophysiol 2010;103:761-78.
120. Palazón-García R, Benavente-Valdepeñas AM. Spasticity after spinal cord injury part 2-treatment. J Neurol Disord Stroke 2017;5:1132.
122. Saulino M. Intrathecal baclofen therapy for the control of spasticity. et al., editors. Neuromodulation. 2nd ed. In: Krames ES, Peckham PH, Rezai ARCambridge (MA): Academic Press; 2018. p. 889-900.
123. Braid JJ, Kirker SG, Baguley IJ. Spasticity increases during pregabalin withdrawal. Brain Inj 2013;27:120-4.
126. Ridgeway B, Wallace M, Gerayli A. Ziconotide for the treatment of severe spasticity after spinal cord injury. Pain 2000;85:287-9.
129. Yano S, Kuroda S, Shichinohe H, et al. Bone marrow stromal cell transplantation preserves gammaaminobutyric acid receptor function in the injured spinal cord. J Neurotrauma 2006;23:1682-92.
130. Gong C, Zheng X, Guo F, et al. Human spinal GABA neurons alleviate spasticity and improve locomotion in rats with spinal cord injury. Cell Rep 2021;34:108889.
132. Fu E, Wallace K, Grayden K, et al. A review of neural stem cell transplant therapy for traumatic spinal cord injury. SN Compr Clin Med 2021;3:1586-92.
133. Liabeuf S, Stuhl-Gourmand L, Gackière F, et al. Prochlorperazine increases KCC2 function and reduces spasticity after spinal cord injury. J Neurotrauma 2017;34:3397-406.
135. Kitzman PH, Uhl TL, Dwyer MK. Gabapentin suppresses spasticity in the spinal cord-injured rat. Neuroscience 2007;149:813-21.
138. Tanabe M, Ono K, Honda M, et al. Gabapentin and pregabalin ameliorate mechanical hypersensitivity after spinal cord injury in mice. Eur J Pharmacol 2009;609:65-8.
139. Hosseini M, Karami Z, Janzadenh A, et al. The Effect of Intrathecal administration of muscimol on modulation of neuropathic pain symptoms resulting from spinal cord injury; an experimental study. Emerg (Tehran) 2014;2:151-7.
141. Fandel TM, Trivedi A, Nicholas CR, et al. Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell 2016;19:544-57.
142. Kim K, Mishina M, Kokubo R, et al. Ketamine for acute neuropathic pain in patients with spinal cord injury. J Clin Neurosci 2013;20:804-7.
144. Eide PK, Stubhaug A, Stenehjem AE. Central dysesthesia pain after traumatic spinal cord injury is dependent on Nmethyl-D-aspartate receptor activation. Neurosurgery 1995;37:1080-7.
145. Kvarnström A, Karlsten R, Quiding H, et al. The analgesic effect of intravenous ketamine and lidocaine on pain after spinal cord injury. Acta Anaesthesiol Scand 2004;48:498-506.
148. Chiou-Tan FY, Tuel SM, Johnson JC, et al. Effect of mexiletine on spinal cord injury dysesthetic pain. Am J Phys Med Rehabil 1996;75:84-7.
149. Min K, Oh Y, Lee SH, et al. Symptom-based treatment of neuropathic pain in spinal cord-injured patients: a randomized crossover clinical trial. Am J Phys Med Rehabil 2016;95:330-8.
150. Sang C, Jenkins K, Wang K, et al. (312/692) Fosphenytoin relieves central neuropathic pain following spinal cord injury. J Pain 2006;7:S2.
151. Tai Q, Kirshblum S, Chen B, et al. Gabapentin in the treatment of neuropathic pain after spinal cord injury: a prospective, randomized, double-blind, crossover trial. J Spinal Cord Med 2002;25:100-5.
152. Rintala DH, Holmes SA, Courtade D, et al. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch Phys Med Rehabil 2007;88:1547-60.
153. Yilmaz B, Yasar E, Omac OK, et al. Gabapentin vs. pregabalin for the treatment of neuropathic pain in patients with spinal cord injury: a crossover study. Turk J Phys Med Rehab 2014;61:1-5.
154. Vranken JH, Dijkgraaf MG, Kruis MR, et al. Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. Pain 2008;136:150-7.
155. Cardenas DD, Emir B, Parsons B. Examining the time to therapeutic effect of pregabalin in spinal cord injury patients with neuropathic pain. Clin Ther 2015;37:1081-90.
157. Herman RM, D'Luzansky SC, Ippolito R. Intrathecal baclofen suppresses central pain in patients with spinal lesions. A pilot study. Clin J Pain 1992;8:338-45.
158. Kitzman PH. Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat. Neurosci Lett 2009;455:150-3.
159. Li Y, Li X, Harvey PJ, et al. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity. J Neurophysiol 2004;92:2694-703.
161. Marcantoni M, Fuchs A, Löw P, et al. Early delivery and prolonged treatment with nimodipine prevents the development of spasticity after spinal cord injury in mice. Sci Transl Med 2020;12:eaay0167.
163. Coffey JR, Cahill D, Steers W, et al. Intrathecal baclofen for intractable spasticity of spinal origin: results of a long-term multicenter study. J Neurosurg 1993;78:226-32.
165. Aydin G, Tomruk S, Keleş I, et al. Transcutaneous electrical nerve stimulation versus baclofen in spasticity: clinical and electrophysiologic comparison. Am J Phys Med Rehabil 2005;84:584-92.