1. Kobayashi K, Sato K, Kato F, et al. Trends in the numbers of spine surgeries and spine surgeons over the past 15 years. Nagoya J Med Sci 2022;84:155-62.
3. Perfetti DC, Kisinde S, Rogers-LaVanne MP, et al. Robotic spine surgery: past, present, and future. Spine (Phila Pa 1976) 2022;47:909-21.
4. Fan Y, Du JP, Liu JJ, et al. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopy-guided method in spine surgery: an updated meta-analysis. Medicine (Baltimore) 2018;97:e10970.
6. Ahern DP, Gibbons D, Schroeder GD, et al. Image-guidance, robotics, and the future of spine surgery. Clin Spine Surg 2020;33:179-84.
7. Nathoo N, Cavuşoğlu MC, Vogelbaum MA, et al. In touch with robotics: neurosurgery for the future. Neurosurgery 2005;56:421-33.
10. D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg 2019;6:9-23.
14. Pérez de la Torre RA, Ramanathan S, Williams AL, et al. Minimally-invasive assisted robotic spine surgery (MARSS). Front Surg 2022;9:884247.
15. Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus 2017;42:E14.
19. Wang B, Wang Y, Zhao Q, et al. Pediculoplasty combined with vertebroplasty for the treatment of Kummell’s disease without neurological impairment: robot-assisted and fluoroscopy-guided. Am J Transl Res 2020;12:8019-29.
21. Li Q, Du Z, Yu H. Precise laminae segmentation based on neural network for robot-assisted decompressive laminectomy. Comput Methods Programs Biomed 2021;209:106333.
22. Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine (Phila Pa 1976) 2020;45:E111-9.
24. Zhang TT, Wang ZP, Wang ZH, et al. Accuracy and safety of robot assisted pedicle screw placement. Zhongguo Gu Shang 2022;35:108-12.
26. Khan A, Rho K, Mao JZ, et al. Comparing cortical bone trajectories for pedicle screw insertion using robotic guidance and three-dimensional computed tomography navigation. World Neurosurg 2020;141:e625-32.
39. Díaz-Feijoo B, Rius M, Gracia M, et al. Donor robotic-assisted laparoscopy for uterus transplantation. Fertil Steril 2022;117:651-2.
40. Esposito C, Autorino G, Castagnetti M, et al. Robotics and future technical developments in pediatric urology. Semin Pediatr Surg 2021;30:151082.
41. Lee JY, Bhowmick DA, Eun DD, et al. Minimally invasive, robot-assisted, anterior lumbar interbody fusion: a technical note. J Neurol Surg A Cent Eur Neurosurg 2013;74:258-61.
44. Shafi KA, Pompeu YA, Vaishnav AS, et al. Does robot-assisted navigation influence pedicle screw selection and accuracy in minimally invasive spine surgery? Neurosurg Focus 2022;52:E4.
46. Chen X, Song Q, Wang K, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion: a retrospective matched-control analysis for clinical and quality-of-life outcomes. J Comp Eff Res 2021;10:845-56.
49. Good CR, Orosz L, Schroerlucke SR, et al. Complications and revision rates in minimally invasive robotic-guided versus fluoroscopic-guided spinal fusions: the MIS ReFRESH prospective comparative study. Spine (Phila Pa 1976) 2021;46:1661-8.
50. Chang M, Wang L, Yuan S, et al. Percutaneous endoscopic robot-assisted transforaminal lumbar interbody fusion (PE RA-TLIF) for lumbar spondylolisthesis: a technical note and two years clinical results. Pain Physician 2022;25:E73-86.
55. Fan M, Liu Y, He D, et al. Improved accuracy of cervical spinal surgery with robot-assisted screw insertion: a prospective, randomized, controlled study. Spine (Phila Pa 1976) 2020;45:285-91.
56. Beyer RS, Nguyen A, Brown NJ, et al. Spinal robotics in cervical spine surgery: a systematic review with key concepts and technical considerations. J Neurosurg Spine 2022;38:66-74.
59. Tian W. Robot-assisted posterior C1-2 transarticular screw fixation for atlantoaxial instability: a case report. Spine (Phila Pa 1976) 2016;41 Suppl 19:B2-5.
61. Repko M, Filipovič M, Leznar M, et al. S2 alar-iliac screws in fixation and correction of combined neuromuscular spinal and pelvic deformities. Acta Chir Orthop Traumatol Cech 2018;85:194-8.
64. Laratta JL, Shillingford JN, Lombardi JM, et al. Accuracy of S2 alar-iliac screw placement under robotic guidance. Spine Deform 2018;6:130-6.
66. Shillingford JN, Laratta JL, Park PJ, et al. Human versus robot: a propensity-matched analysis of the accuracy of free hand versus robotic guidance for placement of S2 alariliac (S2AI) screws. Spine (Phila Pa 1976) 2018;43:E1297-304.
70. Neumann N, Meylheuc L, Barbe L, et al. Robot-assisted bone cement injection. IEEE Trans Biomed Eng 2022;69:138-47.
71. Pan M, Li Q, Li S, et al. Percutaneous endoscopic lumbar discectomy: indications and complications. Pain Physician 2020;23:49-56.
72. Yang H, Gao W, Duan Y, et al. Two-dimensional fluoroscopy-guided robot-assisted percutaneous endoscopic transforaminal discectomy: a retrospective cohort study. Am J Transl Res 2022;14:3121-31.
75. Pu F, Zhang Z, Chen Z, et al. Application of the da Vinci surgical robot system in presacral nerve sheath tumor treatment. Oncol Lett 2020;20:125.
76. Matveeff L, Baste JM, Gilard V, et al. Case report: mini-invasive surgery assisted by Da Vinci
® robot for a recurrent paravertebral schwannoma. Neurochirurgie 2020;66:179-82.
78. Darlow M, Suwak P, Sarkovich S, et al. A pathway for the diagnosis and treatment of lumbar spinal stenosis. Orthop Clin North Am 2022;53:523-34.
80. Han X, Tian W, Liu Y. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine 2019 Feb 8:1-8. doi:
10.3171/2018.10.SPINE18487. [Epub].
81. Zhou LP, Zhang RJ, Sun YW, et al. Accuracy of pedicle screw placement and four other clinical outcomes of robotic guidance technique versus computer-assisted navigation in thoracolumbar surgery: a meta-analysis. World Neurosurg 2021;146:e139-50.
87. Lee NJ, Buchanan IA, Zuckermann SL, et al. What is the comparison in robot time per screw, radiation exposure, robot abandonment, screw accuracy, and clinical outcomes between percutaneous and open robot-assisted short lumbar fusion?: a multicenter, propensity-matched analysis of 310 patients. Spine (Phila Pa 1976) 2022;47:42-8.
88. Shahi P, Vaishnav A, Araghi K, et al. Robotics reduces radiation exposure in minimally invasive lumbar fusion compared with navigation. Spine (Phila Pa 1976) 2022;47:1279-86.
91. Torii Y, Ueno J, Iinuma M, et al. Accuracy of robotic-assisted pedicle screw placement comparing junior surgeons with expert surgeons: can junior surgeons place pedicle screws as accurately as expert surgeons? J Orthop Sci 2023;28:961-5.
97. Passias PG, Brown AE, Alas H, et al. A cost benefit analysis of increasing surgical technology in lumbar spine fusion. Spine J 2021;21:193-201.
101. Pennington Z, Judy BF, Zakaria HM, et al. Learning curves in robot-assisted spine surgery: a systematic review and proposal of application to residency curricula. Neurosurg Focus 2022;52:E3.
105. Vasan N, Scherman DB, Kam A. A tale of two robots: operating times and learning curves in robot-assisted lumbar fusion. J Clin Neurosci 2022;97:42-8.
107. Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J 2021;21:181-92.