2. Vadalà G, Di Martino A, Russo F, et al. Autologous bone marrow concentrate combined with platelet-rich plasma enhance bone allograft potential to induce spinal fusion. J Biol Regul Homeost Agents 2016 30(4 Suppl 1):165-72.
4. Di Martino A, Russo F, Denaro V. Spontaneous fusion of L5 spondyloptosis: should we learn from nature? Spine J 2012 12:529.
7. Vadalà G, Russo F, Musumeci M, et al. Clinically relevant hydrogel-based on hyaluronic acid and platelet rich plasma as a carrier for mesenchymal stem cells: rheological and biological characterization. J Orthop Res 2017 35:2109-16.
8. Vadalà G, Russo F, Ambrosio L, et al. Mesenchymal stem cells for intervertebral disc regeneration. J Biol Regul Homeost Agents 2016 30(4 Suppl 1):173-9.
9. Russo F, Hartman RA, Bell KM, et al. Biomechanical evaluation of transpedicular nucleotomy with intact annulus fibrosus. Spine (Phila Pa 1976) 2017 42:E193-201.
10. Vadala’ G, Russo F, Ambrosio L, et al. Biotechnologies and biomaterials in spine surgery. J Biol Regul Homeost Agents 2015 29(4 Suppl):137-47.
13. Shweikeh F, Amadio JP, Arnell M, et al. Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus 2014 36:E10.
14. Yu L, Chen X, Margalit A, et al. Robot-assisted vs freehand pedicle screw fixation in spine surgery - a systematic review and a meta-analysis of comparative studies. Int J Med Robot 2018 14:e1892.
17. Vadalà G, Russo F, Pattappa G, et al. A nucleotomy model with intact annulus fibrosus to test intervertebral disc regeneration strategies. Tissue Eng Part C Methods 2015 21:1117-24.
21. Beutler WJ, Peppelman WC Jr, DiMarco LA. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine (Phila Pa 1976) 2013 38:356-63.
22. Dreval’ ON, Rynkov IP, Kasparova KA, et al. Results of using Spine Assist Mazor in surgical treatment of spine disorders. Zh Vopr Neirokhir Im N N Burdenko 2014 78:14-20.
23. van Dijk JD, van den Ende RP, Stramigioli S, et al. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine (Phila Pa 1976) 2015 40:E986-91.
24. Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with Spine-Assist surgical robot: retrospective study. Spine (Phila Pa 1976) 2010 35:2109-15.
25. Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 2012 37:E496-501.
26. Onen MR, Naderi S. Robotic systems in spine surgery. Turk Neurosurg 2014 24:305-11.
27. Onen MR, Simsek M, Naderi S. Robotic spine surgery: a preliminary report. Turk Neurosurg 2014 24:512-8.
28. Hyun SJ, Kim KJ, Jahng TA, et al. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine (Phila Pa 1976) 2017 42:353-8.
34. Zygourakis CC, Ahmed AK, Kalb S, et al. Technique: open lumbar decompression and fusion with the Excelsius GPS robot. Neurosurg Focus 2018 45(VideoSuppl1):V6.
35. Vaccaro AR, Harris JA, Wadhwa R, et al. ExcelsiusGPS® Robotic Navigation Platform improves screw accuracy and reduces radiation exposure compared to conventional fluoroscopic techniques in a simulated surgical model. White paper (GMWP51). Audubon (PA): Globus Medical, Inc; 2018.
38. Benech CA, Perez R, Benech F, et al. Navigated robotic assistance results in improved screw accuracy and positive clinical outcomes: an evaluation of the first 54 cases. J Robot Surg 2019 Aug 8 [Epub].
https://doi.org/10.1007/s11701-019-01007-z.
39. Vardiman AB, Wallace DJ, Crawford NR, et al. Pedicle screw accuracy in clinical utilization of minimally invasive navigated robot-assisted spine surgery. J Robot Surg 2019 Jul 19 [Epub].
https://doi.org/10.1007/s11701-019-00994-3.
40. Lefranc M, Peltier J. Evaluation of the ROSATM Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices 2016 13:899-906.
44. Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine 2019 Feb 8 1. -8. [Epub]
https://doi.org/10.3171/2018.10.SPINE18487.
45. Tian W. Robot-assisted posterior C1-2 transarticular screw fixation for atlantoaxial instability: a case report. Spine (Phila Pa 1976) 2016 41 Suppl 19:B2-5.
47. Fan M, Lui Y, Tian W. Internal fixation in upper cervical spinal surgery: a randomized controlled study. In: The 18th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery; 2018 Jun 6-9; Beijing, China. 2018 2:pp 51-5.
48. Krieg SM, Meyer B. First experience with the jump-starting robotic assistance device Cirq. Neurosurg Focus 2018 45(VideoSuppl1):V3.
50. Edström E, Burström G, Nachabe R, et al. A novel augmented-reality-based surgical navigation system for spine surgery in a hybrid operating room: design, workflow, and clinical applications. Oper Neurosurg (Hagerstown) 2019 Aug 27 [Epub]. pii: opz236.
https://doi.org/10.1093/ons/opz236.
53. Burström G, Nachabe R, Persson O, et al. Augmented and virtual reality instrument tracking for minimally invasive spine surgery: a feasibility and accuracy study. Spine (Phila Pa 1976) 2019 44:1097-104.
54. Elmi-Terander A, Burström G, Nachabe R, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine (Phila Pa 1976) 2019 44:517-25.
55. Edström E, Burström G, Omar A, et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine (Phila Pa 1976) 2020 45:E45-53.
56. Auloge P, Cazzato RL, Ramamurthy N, et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur Spine J 2019 Jul 2 [Epub].
https://doi.org/10.1007/s00586-019-06054-6.
58. Yoon JW, Chen RE, Han PK, et al. Technical feasibility and safety of an intraoperative head-up display device during spine instrumentation. Int J Med Robot 2017 Sep;13(3):
https://doi.org/10.1002/rcs.1770. Epub 2016 Aug 29.
61. Agten CA, Dennler C, Rosskopf AB, et al. Augmented reality-guided lumbar facet joint injections. Invest Radiol 2018 53:495-8.
62. Liu H, Wu J, Tang Y, et al. Percutaneous placement of lumbar pedicle screws via intraoperative CT image-based augmented reality-guided technology. J Neurosurg Spine 2019 Dec 20 1. -6. [Epub]
https://doi.org/10.3171/2019.10.SPINE19969
.
65. Müller F, Roner S, Liebmann F, et al. Augmented reality navigation for spinal pedicle screw instrumentation using intraoperative 3D imaging. Spine J 2019 Oct 25 [Epub]. pii: S1529-9430(19)31058-7.
https://doi.org/10.1016/j.spinee.2019.10.012.
66. Urakov TM, Wang MY, Levi AD. Workflow caveats in augmented reality-assisted pedicle instrumentation: cadaver lab. World Neurosurg 2019 126:e1449-55.
67. Wanivenhaus F, Neuhaus C, Liebmann F, et al. Augmented reality-assisted rod bending in spinal surgery. Spine J 2019 19:1687-9.
68. Molina CA, Theodore N, Ahmed AK, et al. Augmented reality-assisted pedicle screw insertion: a cadaveric proof-of-concept study. J Neurosurg Spine 2019 Mar 29 1. -8. [Epub]
https://doi.org/10.3171/2018.12.SPINE181142
.
70. Carl B, Bopp M, Saß B, et al. Microscope-based augmented reality in degenerative spine surgery: initial experience. World Neurosurg 2019 128:e541-51.
71. Umebayashi D, Yamamoto Y, Nakajima Y, et al. Augmented reality visualization-guided microscopic spine surgery: transvertebral anterior cervical foraminotomy and posterior foraminotomy. J Am Acad Orthop Surg Glob Res Rev 2018 2:e008.
76. Fomekong E, Safi SE, Raftopoulos C. Spine navigation based on 3-dimensional robotic fluoroscopy for accurate percutaneous pedicle screw placement: a prospective study of 66 consecutive cases. World Neurosurg 2017 108:76-83.
79. Divi S, Pollster S, Ramos E, et al. The current role of robotic technology in spine surgery. Oper Tech Orthop 2017 27:275-82.
82. Kim HJ, Jung WI, Chang BS, et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot 2017 Sep;13(3):
https://doi.org/10.1002/rcs.1779. Epub 2016 Sep 27.
83. Croissant Y, Zangos S, Albrecht MH, et al. Robot-assisted percutaneous placement of K-wires during minimally invasive interventions of the spine. Minim Invasive Ther Allied Technol 2019 28:373-80.
84. Wagner SC, Morrissey PB, Kaye ID, et al. Intraoperative pedicle screw navigation does not significantly affect complication rates after spine surgery. J Clin Neurosci 2018 47:198-201.
86. Ghasem A, Sharma A, Greif DN, et al. The arrival of robotics in spine surgery: a review of the literature. Spine (Phila Pa 1976) 2018 43:1670-7.
87. Barzilay Y, Schroeder JE, Hiller N, et al. Robot-assisted vertebral body augmentation: a radiation reduction tool. Spine (Phila Pa 1976) 2014 39:153-7.
88. Urakov TM, Chang KH, Burks SS, et al. Initial academic experience and learning curve with robotic spine instrumentation. Neurosurg Focus 2017 42:E4.
92. Vadalà G, Accoto D, Russo F, et al. A new surgical positioning system for robotic assisted minimally invasive spine surgery and transpedicular approach to the disc. J Biol Regul Homeost Agents 2017 31(4 suppl 1):159-65.
93. Portaccio I, Valentini S, Tagliamonte NL, et al. Design of a positioning system for orienting surgical cannulae during Minimally Invasive Spine Surgery. In: Paper presented at: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). 2016 Jun 26-29; Singapore.