2. Scheer JK, Ames CP, Deviren V. Assessment and treatment of cervical deformity. Neurosurg Clin N Am 2013;24:249-74.
3. Iyer S, Nemani VM, Nguyen J, et al. Impact of cervical sagittal alignment parameters on neck disability. Spine 2016;41:371-7.
4. Iyer S, Kim HJ, Bao H, et al. Cervical deformity patients have baseline swallowing dysfunction but surgery does not increase dysphagia at 3 months: results from a prospective cohort study. Glob Spine J 2019;9:532-9.
5. Smith JS, Line B, Bess S, et al. The health impact of adult cervical deformity in patients presenting for surgical treatment: comparison to United States population norms and chronic disease states based on the EuroQuol-5 dimensions questionnaire. Neurosurgery 2017;80:716-25.
6. Buell TJ, Buchholz AL, Quinn JC, et al. Importance of sagittal alignment of the cervical spine in the management of degenerative cervical myelopathy. Neurosurg Clin N Am 2018;29:69-82.
9. Cho SK, Safir S, Lombardi JM, et al. Cervical spine deformity: indications, considerations, and surgical outcomes. J Am Acad Orthop Surg 2019;27:e555-67.
10. Chi JH, Tay B, Stahl D, et al. Complex deformities of the cervical spine. Neurosurg Clin N Am 2007;18:295-304.
11. Hilibrand AS, Carlson GD, Palumbo MA, et al. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 1999;81:519-28.
12. Helgeson MD, Bevevino AJ, Hilibrand AS. Update on the evidence for adjacent segment degeneration and disease. Spine J Off J North Am Spine Soc 2013;13:342-51.
13. Smith JS, Shaffrey CI, Lafage V, et al. Spontaneous improvement of cervical alignment after correction of global sagittal balance following pedicle subtraction osteotomy. J Neurosurg Spine 2012;17:300-7.
14. Oh T, Scheer JK, Eastlack R, et al. Cervical compensatory alignment changes following correction of adult thoracic deformity: a multicenter experience in 57 patients with a 2-year follow-up. J Neurosurg Spine 2015;22:658-65.
15. Hardacker JW, Shuford RF, Capicotto PN, et al. Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine 1997;22:1472-80. discussion 1480.
17. Pigge RR, Scheerder FJ, Smit TH, et al. Effectiveness of preoperative planning in the restoration of balance and view in ankylosing spondylitis. Neurosurg Focus 2008;24:E7.
18. Suk KS, Kim KT, Lee SH, et al. Significance of chin-brow vertical angle in correction of kyphotic deformity of ankylosing spondylitis patients. Spine 2003;28:2001-5.
19. Staub BN, Lafage R, Kim HJ, et al. Cervical mismatch: the normative value of T1 slope minus cervical lordosis and its ability to predict ideal cervical lordosis. J Neurosurg Spine 2018;30:31-7.
20. Gore DR, Sepic SB, Gardner GM. Roentgenographic findings of the cervical spine in asymptomatic people. Spine 1986;11:521-24.
21. Gore DR. Roentgenographic findings in the cervical spine in asymptomatic persons: a ten-year follow-up. Spine 2001;26:2463-6.
22. Ames CP, Smith JS, Eastlack R, et al. Reliability assessment of a novel cervical spine deformity classification system. J Neurosurg Spine 2015;23:673-83.
23. Kim HJ, Virk S, Elysee J, et al. The morphology of cervical deformities: a two-step cluster analysis to identify cervical deformity patterns. J Neurosurg Spine 2019;1-7. doi:
10.3171/2019.9.SPINE19730. [Epub].
26. Lafage R, Challier V, Liabaud B, et al. Natural head posture in the setting of sagittal spinal deformity: validation of chinbrow vertical angle, slope of line of sight, and McGregor’s slope with health-related quality of life. Neurosurgery 2016;79:108-15.
29. Shimizu K, Nakamura M, Nishikawa Y, et al. Spinal kyphosis causes demyelination and neuronal loss in the spinal cord: a new model of kyphotic deformity using juvenile Japanese small game fowls. Spine 2005;30:2388-92.
30. Jarzem PF, Quance DR, Doyle DJ, et al. Spinal cord tissue pressure during spinal cord distraction in dogs. Spine 1992;17(8 Suppl):S227-34.
32. Passias PG, Horn SR, Jalai CM, et al. Comparative analysis of perioperative complications between a multicenter prospective cervical deformity database and the Nationwide Inpatient Sample database. Spine J 2017;17:1633-40.
33. Lehman RA, Angevine P, Rhim SC, et al. Iatrogenic cervical deformity. Neurosurg Clin N Am 2006;17:247-61. vi.
34. Zdeblick TA, Abitbol JJ, Kunz DN, et al. Cervical stability after sequential capsule resection. Spine 1993;18:2005-8.
35. Grubb MR, Currier BL, Stone J, et al. Biomechanical evaluation of posterior cervical stabilization after a wide laminectomy. Spine 1997;22:1948-54.
36. Kaptain GJ, Simmons NE, Replogle RE, et al. Incidence and outcome of kyphotic deformity following laminectomy for cervical spondylotic myelopathy. J Neurosurg 2000;93(2 Suppl):199-204.
37. Albert TJ, Vacarro A. Postlaminectomy kyphosis. Spine 1998;23:2738-45.
39. Cho SK, Kim JS, Overley SC, et al. Cervical laminoplasty: indications, surgical considerations, and clinical outcomes. J Am Acad Orthop Surg 2018;26:e142-52.
40. Takeshita K, Seichi A, Akune T, et al. Can laminoplasty maintain the cervical alignment even when the C2 lamina is contained? Spine 2005;30:1294-8.
41. Iizuka H, Nakajima T, Iizuka Y, et al. Cervical malalignment after laminoplasty: relationship to deep extensor musculature of the cervical spine and neurological outcome. J Neurosurg Spine 2007;7:610-4.
42. Matsuzaki H, Hoshino M, Kiuchi T, et al. Dome-like expansive laminoplasty for the second cervical vertebra. Spine 1989;14:1198-203.
44. Lee CK, Shin DA, Yi S, et al. Correlation between cervical spine sagittal alignment and clinical outcome after cervical laminoplasty for ossification of the posterior longitudinal ligament. J Neurosurg Spine 2016;24:100-7.
45. Suda K, Abumi K, Ito M, et al. Local kyphosis reduces surgical outcomes of expansive open-door laminoplasty for cervical spondylotic myelopathy. Spine 2003;28:1258-62.
46. Passias PG, Soroceanu A, Smith J, et al. Postoperative cervical deformity in 215 thoracolumbar patients with adult spinal deformity: prevalence, risk factors, and impact on patient-reported outcome and satisfaction at 2-year follow-up. Spine 2015;40:283-91.
48. Passias PG, Oh C, Jalai CM, et al. Predictive model for cervical alignment and malalignment following surgical correction of adult spinal deformity. Spine 2016;41:E1096-103.
49. Passias PG, Vasquez-Montes D, Poorman GW, et al. Predictive model for distal junctional kyphosis after cervical deformity surgery. Spine J 2018;18:2187-94.
50. Passias PG, Naessig S, Kummer N, et al. Predicting development of severe clinically relevant distal junctional kyphosis following adult cervical deformity surgery, with further distinction from mild asymptomatic episodes. J Neurosurg Spine 2021 Dec;17:1-8. doi:
10.3171/2021.8.SPINE21533. [Epub].
52. Lafage R, Smith JS, Soroceanu A, et al. Predicting mechanical failure following cervical deformity surgery: a composite score integrating age-adjusted cervical alignment targets. Global Spine J 2022 Mar;29:21925682221086535doi:
10.1177/21925682221086535. [Epub].
53. Line BG, Bess S, Lafage R, et al. Effective prevention of proximal junctional failure in adult spinal deformity surgery requires a combination of surgical implant prophylaxis and avoidance of sagittal alignment overcorrection. Spine 2020;45:258-27.
54. Joaquim AF, Riew KD. Management of cervical spine deformity after intradural tumor resection. Neurosurg Focus 2015;39:E13.
56. Noh SH, Takahashi T, Inoue T, et al. Postoperative spinal deformity and instability after cervical spinal cord tumor resection in adults: a systematic review and meta-analysis. J Clin Neurosci 2022;100:148-54.
57. Avila MJ, Walter CM, Skoch J, et al. Fusion after intradural spine tumor resection in adults: a review of evidence and practices. Clin Neurol Neurosurg 2015;138:169-73.